ComA of Streptococcus is a member of the bacteriocin-associated ATP-binding cassette transporter family and is postulated to be responsible for both the processing of the propeptide ComC and secretion of the mature quorum-sensing signal. The 150-amino acid peptidase domain (PEP) of ComA specifically recognizes an extended region of ComC that is 15 amino acids in length. It has been proposed that an amphipathic ␣-helix formed by the N-terminal leader region of ComC, as well as the Gly-Gly motif at the cleavage site, is critical for the PEPComC interaction. To elucidate the substrate recognition mechanism, we determined the three-dimensional crystal structure of Streptococcus mutans PEP and then constructed models for the PEP⅐ComC complexes. PEP had an overall structure similar to the papain-like cysteine proteases as has long been predicted. The active site was located at the bottom of a narrow cleft, which is suitable for binding the Gly-Gly motif. Together with the results from mutational experiments, a shallow hydrophobic concave surface of PEP was proposed as a site that accommodates the N-terminal helix of ComC. This dual mode of substrate recognition would provide the small PEP domain with an extremely high substrate specificity.
Monofunctional histidinol phosphate phosphatase from Thermus thermophilus HB8, which catalyzes the dephosphorylation of l-histidinol phosphate, belongs to the PHP family, together with the PHP domain of bacterial DNA polymerase III and family X DNA polymerase. We have determined the structures of the complex with a sulfate ion, the complex with a phosphate ion, and the unliganded form at 1.6, 2.1, and 1.8 A resolution, respectively. The enzyme exists as a tetramer, and the subunit consists of a distorted (betaalpha)7 barrel with one linker and one C-terminal tail. Three metal sites located on the C-terminal side of the barrel are occupied by Fe1, Fe2, and Zn ions, respectively, forming a trinuclear metal center liganded by seven histidines, one aspartate, one glutamate, and one hydroxide with two Fe ions bridged by the hydroxide. In the complexes, the sulfate or phosphate ion is coordinated to three metal ions, resulting in octahedral, trigonal bipyramidal, and tetrahedral geometries around the Fe1, Fe2, and Zn ions, respectively. The ligand residues are derived from the four motifs that characterize the PHP family and from two motifs conserved in histidinol phosphate phosphatases. The (betaalpha)7 barrel and the metal cluster are closely related in nature and architecture to the (betaalpha)8 barrel and the mononuclear or dinuclear metal center in the amidohydrolase superfamily, respectively. The coordination behavior of the phosphate ion toward the metal center supports the mechanism in which the bridging hydroxide makes a direct attack on the substrate phosphate tridentately bound to the two Fe ions and Zn ion to hydrolyze the phosphoester bond.
TTHA0281 is a hypothetical protein from Thermus thermophilus HB8 that belongs to an uncharacterized protein family, UPF0150, in the Pfam database and to COG1598 in the National Center for Biotechnology Information Database of Clusters of Orthologous Groups. The X-ray crystal structure of the protein was determined by a multiple-wavelength anomalous dispersion technique and was refined at 1.9 A resolution to a final R factor of 18.5%. The TTHA0281 monomer adopts an alpha-beta-beta-beta-alpha fold and forms a homotetramer. Based on the properties and functions of structural homologues of the TTHA0281 monomer, the TTHA0281 protein is speculated to be involved in RNA metabolism, including RNA binding and cleavage.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.