Allergic inflammation triggered by exposure of an allergen frequently leads to the onset of chronic inflammatory diseases such as atopic dermatitis (AD) and bronchial asthma. The mechanisms underlying chronicity in allergic inflammation remain unresolved. Periostin, a recently characterized matricellular protein, interacts with several cell surface integrin molecules, providing signals for tissue development and remodeling. Here we show that periostin is a critical mediator for the amplification and persistence of allergic inflammation using a mouse model of skin inflammation. Th2 cytokines IL-4 and IL-13 stimulated fibroblasts to produce periostin, which interacted with α v integrin, a functional periostin receptor on keratinocytes, inducing production of proinflammatory cytokines, which consequently accelerated Th2-type immune responses. Accordingly, inhibition of periostin or α v integrin prevented the development or progression of allergen-induced skin inflammation. Thus, periostin sets up a vicious circle that links Th2-type immune responses to keratinocyte activation and plays a critical role in the amplification and chronicity of allergic skin inflammation.
An elevated periostin level in patients with SSc is associated with severity of skin sclerosis. Periostin may be a potential biomarker for progressive skin fibrosis in SSc.
Proliferation and differentiation of keratinocytes are normally well balanced, but this balance can be perturbed in wound healing and is dysregulated in pathological conditions such as atopic dermatitis. Epithelial-mesenchymal interaction affects this event via the cross-talk of cytokines and growth factors. Periostin, a matricellular protein, has an important role during reepithelialization in wound healing and is critical for hyperproliferation of keratinocytes in atopic dermatitis. Here we investigated how periostin regulates proliferation and differentiation of keratinocytes in the epithelial-mesenchymal interactions using a three-dimensional organotypic air-liquid interface coculture system. The release of IL-1α from keratinocytes and subsequent IL-6 production from fibroblasts were critical for keratinocyte proliferation and differentiation. Periostin secreted from fibroblasts was required for IL-1α-induced IL-6 production and enhanced IL-6 production by activation of the NF-κB pathway synergistically with IL-1α. Thus, the combination of an autocrine loop of periostin and a paracrine loop composed of IL-1α and IL-6 regulates keratinocyte proliferation and differentiation in the epithelial-mesenchymal interactions, and periostin tunes the magnitude of keratinocyte proliferation and differentiation by interacting with the paracrine IL-1α/IL-6 loop.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.