We present chemical abundance analyses of sodium, iron-peak and neutroncapture elements for 97 kinematically selected thick disk, inner halo and outer halo stars with metallicities −3.3 <[Fe/H]< −0.5. The main aim of this study is to examine chemical similarities and differences among metal-poor stars belonging to these old Galactic components as a clue to determine their early chemodynamical evolution. In our previous paper, we obtained abundances of α elements by performing a one-dimensional LTE abundance analysis based on the highresolution (R ∼ 50000) spectra obtained with the Subaru/HDS. In this paper, Facilities: Subaru (HDS).
The Infrared Camera (IRC) is one of two focal-plane instruments on the AKARI 1 satellite. It is designed for wide-field deep imaging and low-resolution spectroscopy in the near-to mid-infrared (1.8-26.5 µm) in the pointed observation mode of AKARI. IRC is also operated in the survey mode to make an all-sky survey at 9 and 18 µm. It comprises three channels. The NIR channel (1.8-5.5 µm) employs a 512 × 412 InSb array, whereas both the MIR-S (4.6-13.4 µm) and MIR-L (12.6-26.5 µm) channels use 256 × 256 Si:As impurity band conduction arrays. Each of the three channels has a field-of-view of about 10 ′ × 10 ′ and are operated simultaneously. The NIR and MIR-S share the same field-of-view by virtue of a beam splitter. The MIR-L observes the sky about 25 ′ away from the NIR/MIR-S field-of-view. IRC gives us deep insights into the formation and evolution of galaxies, the evolution of planetary disks, the process of star-formation, the properties of interstellar matter under various physical conditions, and the nature and evolution of solar system objects. The in-flight performance of IRC has been confirmed to be in agreement with the pre-flight expectation. This paper summarizes the design and the in-flight operation and imaging performance of IRC.
AKARI, the first Japanese satellite dedicated to infrared astronomy, was launched on 2006 February 21, and started observations in May of the same year. AKARI has a 68.5 cm cooled telescope, together with two focal-plane instruments, which survey the sky in six wavelength bands from mid–to far-infrared. The instruments also have a capability for imaging and spectroscopy in the wavelength range 2-180$\mu$m in the pointed observation mode, occasionally inserted into a continuous survey operation. The in-orbit cryogen lifetime is expected to be one and a half years. The All-Sky Survey will cover more than 90% of the whole sky with a higher spatial resolution and a wider wavelength coverage than that of the previous IRAS all-sky survey. Point-source catalogues of the All-Sky Survey will be released to the astronomical community. Pointed observations will be used for deep surveys of selected sky areas and systematic observations of important astronomical targets. These will become an additional future heritage of this mission.
We compare elemental abundance patterns of ∼ 200 extremely metal-poor (EMP; [Fe/H]< −3) stars with supernova yields of metal-free stars in order to obtain insights into the characteristic masses of the first (Population III or Pop III) stars in the Universe. Supernova yields are prepared with nucleosynthesis calculations of metal-free stars with various initial masses (M =13, 15, 25, 40 and 100 M ⊙ ) and explosion energies (E 51 = E/10 51 [erg]= 0.5 − 60) to include low-energy, normal-energy, and high-energy explosions. We adopt the mixing-fallback model to take into account possible asymmetry in the supernova explosions and the yields that best-fit the observed abundance patterns of the EMP stars are searched by varying the model parameters. We find that the abundance patterns of the EMP stars are predominantly best-fitted with the supernova yields with initial masses M < 40M ⊙ , and that more than than half of the stars are best fitted with the M = 25M ⊙ hypernova (E 51 = 10) models. The results also indicate that the majority of the primordial supernovae have ejected 10 −2 − 10 −1 M ⊙ of 56 Ni leaving behind a compact remnant, either a neutron star or a black hole, with mass in a range of ∼ 1.5 − 5M ⊙ . The results suggest that the masses of the first stars responsible for the first metalenrichment are predominantly < 40M ⊙ . This implies that the higher mass first stars were either less abundant or directly collapsing into a blackhole without ejecting heavy elements or that a supernova explosion of a higher-mass first star inhibits the formation of the next generation of low-mass stars at [Fe/H]< −3.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.