Background Long-read sequencing of full-length cDNAs enables the detection of structures of aberrant splicing isoforms in cancer cells. These isoforms are occasionally translated, presented by HLA molecules, and recognized as neoantigens. This study used a long-read sequencer (MinION) to construct a comprehensive catalog of aberrant splicing isoforms in non-small-cell lung cancers, by which novel isoforms and potential neoantigens are identified. Results Full-length cDNA sequencing is performed using 22 cell lines, and a total of 2021 novel splicing isoforms are identified. The protein expression of some of these isoforms is then validated by proteome analysis. Ablations of a nonsense-mediated mRNA decay (NMD) factor, UPF1, and a splicing factor, SF3B1, are found to increase the proportion of aberrant transcripts. NetMHC evaluation of the binding affinities to each type of HLA molecule reveals that some of the isoforms potentially generate neoantigen candidates. We also identify aberrant splicing isoforms in seven non-small-cell lung cancer specimens. An enzyme-linked immune absorbent spot assay indicates that approximately half the peptide candidates have the potential to activate T cell responses through their interaction with HLA molecules. Finally, we estimate the number of isoforms in The Cancer Genome Atlas (TCGA) datasets by referring to the constructed catalog and found that disruption of NMD factors is significantly correlated with the number of splicing isoforms found in the TCGA-Lung Adenocarcinoma data collection. Conclusions Our results indicate that long-read sequencing of full-length cDNAs is essential for the precise identification of aberrant transcript structures in cancer cells.
The small GTPase Arl8b localizes primarily to lysosomes and is involved in lysosomal motility and fusion. Here, we show that Arl8b is required for lysosomal degradation of maternal proteins in the visceral yolk sac endoderm (VYSE), an apical cell layer of the visceral yolk sac, of mouse embryos. The VYSE actively takes up maternal materials from uterine fluid and degrades them in lysosomes to provide breakdown products to the embryo. Arl8b gene-trap mice ( ) displayed decreased early embryo body size. The VYSE exhibited defective endocytic trafficking to the lysosome and accumulation of maternal proteins such as albumin and immunoglobulin G in late endocytic organelles. Furthermore, mice in which Arl8b was ablated specifically in the VYSE also showed decreased embryo body size, defects in trafficking to the lysosome and reduction of the free amino acid level in the embryos. Taken together, these results suggest that Arl8b mediates lysosomal degradation of maternal proteins in the VYSE, thereby contributing to mouse embryonic development.
The heart is a significant organ in mammalian life, and the heartbeat mechanism has been an essential focus of science. However, few studies have focused on species differences. Accordingly, challenges remain in studying genes that have universal functions across species and genes that determine species differences. Here, we analyzed transcriptome data in mouse, rat, and human atria, ventricles, and sinoatrial nodes (SA) obtained from different platforms and compared them by calculating specificity measure (SPM) values in consideration of species differences. Among the three heart regions, the species differences in SA were the greatest, and we searched for genes that determined the essential characteristics of SA, which was SHOX2 in our criteria. The SPM value of SHOX2 was prominently high across species. Similarly, by calculating SPM values, we identified 3 atrial-specific, 11 ventricular-specific, and 17 SA-specific markers. Ontology analysis identified 70 cardiac region- and species-specific ontologies. These results suggest that reanalyzing existing data by calculating SPM values may identify novel tissue-specific genes and species-dependent gene expression. This study identified the importance of SHOX2 as an SA-specific transcription factor, a novel cardiac regional marker, and species-dependent ontologies.
The Quaternary basalts along the Chugaryeong Fault zone in central part of the Korean Peninsula are composed of two stratigraphic units in the Jeongok area, calling the Chatan and Jeongok basalts. K-Ar analyses of the mixture of the finegrained plagioclase and anorthoclase from the 18 basalt samples were carried out to reveal the volcanic activity of the area. The results show that the Chatan and Jeongok basalts give a uniform age, giving the weighted average ages of 0.15 ± 0.01 and 0.51 ± 0.01 Ma, respectively. This reveals the age gap between the Chatan and Jeongok basalts was 360,000 years, providing a unique volcanic history for the Quaternary volcanism. The volcanism formed the two large amounts of alkali olivine basalt flows that are similar to each other in primitive chemical composition, phenocryst composition and viscosity with an interval of 360,000 years. The results also make a time constraint on the Jeongok Paleolithic Site where the Jeongok basalt occurs below the sediments containing the Paleolithic artifacts. The age (0.51 Ma) of the Jeongok basalt provides the lower limit for the age of Paleolithic artifacts. Olivine phenocrysts from both the Chatan and Jeongok basalts have significant amount of excess argon, giving apparent older ages on the whole rock K-Ar dating by previous researchers.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.