Ca2+ release from Ca2+ stores is a ‘quantal’ process; it terminates after a rapid release of stored Ca2+. To explain the quantal nature, it has been supposed that a decrease in luminal Ca2+ acts as a ‘brake’ on store release. However, the mechanism for the attenuation of Ca2+ efflux remains unknown. We show that Ca2+ release is controlled by voltage‐ and Ca2+‐activated potassium channels in the Ca2+ store. The potassium channel was identified as the big or maxi‐K (BK)‐type, and was activated by positive shifts in luminal potential and luminal Ca2+ increases, as revealed by patch‐clamp recordings from an exposed nuclear envelope. The blockage or closure of the store BK channel due to Ca2+ efflux developed lumen‐negative potentials, as revealed with an organelle‐specific voltage‐sensitive dye [DiOC5(3); 3,3’‐dipentyloxacarbocyanine iodide], and suppressed Ca2+ release. The store BK channels are reactivated by Ca2+ uptake by Ca2+ pumps regeneratively with K+ entry to allow repetitive Ca2+ release. Indeed, the luminal potential oscillated bistably by ∼45 mV in amplitude. Our study suggests that Ca2+ efflux‐induced store BK channel closures attenuate Ca2+ release with decreases in counter‐influx of K+.
The activation of P2 purinoceptors induces Ca2+ mobilization in the early embryonic chick neural retina. This purinergic Ca2+ response declines parallel with the decrease in mitotic activity during retinal development. To investigate the role of P2 purinoceptors in the regulation of retinal cell proliferation, we studied the effects of the P2 purinoceptor antagonists suramin and pyridoxalphosphate-6-azophenyl-2',4'-disulphonic acid (PPADS), and of the agonist ATP on DNA synthesis in retinal organ cultures from embryonic day 3 (E3) chick. Suramin inhibited [3H]-thymidine incorporation in a dose-dependent manner (IC50: approximately 70 microM). PPADS also reduced [3H]-thymidine incorporation with maximum inhibition of 46% at 100 microM. Exogenous ATP enhanced [3H]-thymidine incorporation in a dose-dependent manner to maximally 200% of control (EC50: approximately 70 microM). In dissociated retinal cultures from E7 chick, both antagonists showed similar inhibitory effects on [3H]-thymidine incorporation without affecting cell viability. In line with these observations, the presence of extracellular ATP was demonstrated both in vitro and in vivo. In the medium of E3 retinal organ cultures, the concentration of ATP increased 25-fold within 1 h of incubation and this concentration was kept for at least 24 h. In the chick amniotic fluid, the ATP concentration was nearly 3 microM at E3 and declined to 0.15 microM at E7. The results indicate that P2 purinoceptors activated by autocrine or paracrine release of ATP are involved in the regulation of DNA synthesis in the neural retina at early embryonic stages.
1. The action of adenosine triphosphate on cytoplasmic Ca2P concentration ([Ca2+]1) was studied in the retinal cell of early embryonic chicks with fura-2 fluorescence measurements. The fluorescence was measured from the whole neural retina dissected from chick embryos at embryonic day three (E3).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.