Understanding the substrate recognition mechanism of γ-secretase is a key step for establishing substrate-specific inhibition of amyloid β-protein (Aβ) production. However, it is widely believed that γ-secretase is a promiscuous protease and that its substrate-specific inhibition is elusive. Here we show that γ-secretase distinguishes the ectodomain length of substrates and preferentially captures and cleaves substrates containing a short ectodomain. We also show that a subset of peptides containing the CDCYCxxxxCxCxSC motif binds to the amino terminus of C99 and inhibits Aβ production in a substrate-specific manner. Interestingly, these peptides suppress β-secretase-dependent cleavage of APP, but not that of sialyltransferase 1. Most importantly, intraperitoneal administration of peptides into mice results in a significant reduction in cerebral Aβ levels. This report provides direct evidence of the substrate preference of γ-secretase and its mechanism. Our results demonstrate that the ectodomain of C99 is a potent target for substrate-specific anti-Aβ therapeutics to combat Alzheimer’s disease.
Yip1A, a mammalian homologue of yeast Yip1p, is a multi-spanning membrane protein that is considered to be involved in transport between the endoplasmic reticulum (ER) and the Golgi. However, the precise role of Yip1A in mammalian cells remains unclear. We show here that endogenous Yip1A is localized to the ER-Golgi intermediate compartment (ERGIC). Knockdown of Yip1A by RNAi did not induce morphological changes in the Golgi, ER, or ERGIC. By analyzing a number of intracellular transport pathways, we found that Yip1A knockdown delayed the transport of Shiga toxin from the Golgi to the ER, but did not affect the anterograde transport of VSVGts045. We also found that a recombinant protein that corresponded to the N-terminal domain of Yip1A inhibited the COPI-independent retrograde transport of GFP-tagged galactosyltransferase, GT-GFP, but not the COPI-dependent retrograde transport of p58/ERGIC53. Furthermore, we found that Yip1A knockdown resulted in the dissociation of Rab6 from the membranes. These results suggested that Yip1A has a role in COPI-independent retrograde transport from the Golgi to the ER and regulates the membrane recruitment of Rab6.
Shiga toxin (Stx) is a major virulence factor of enterohemorrhagicEscherichia colithat occasionally causes fatal systemic complications. We recently developed a tetravalent peptide (PPP-tet) that neutralizes the cytotoxicity of Stx2 using a multivalent peptide library approach. In this study, we used this technique to identify a series of tetravalent peptides that bound to Stx1, another major Stx family member, with high affinity by targeting one receptor-binding site of the B subunit. One peptide, MMA-tet, markedly inhibited Stx1 and Stx2 cytotoxicity with greater potency than PPP-tet. After forming a complex with Stx1 through its specific receptor-binding region, MMA-tet did not affect vesicular transport of the toxin to the endoplasmic reticulum but substantially rescued inhibition of the protein synthesis induced by Stx1. Oral application of MMA-tet protected mice from a fatal dose of anE. coliO157:H7 strain producing both toxins. MMA-tet may be a promising therapeutic agent against the infection.
Shiga toxin 2 (Stx2) is a major virulence factor in infections with Stx-producing Escherichia coli (STEC), which causes gastrointestinal diseases and sometimes fatal systemic complications. Recently, we developed an oral Stx2 inhibitor known as Ac-PPP-tet that exhibits remarkable therapeutic potency in an STEC infection model. However, the precise mechanism underlying the in vivo therapeutic effects of Ac-PPP-tet is unknown. Here, we found that Ac-PPP-tet completely inhibited fluid accumulation in the rabbit ileum caused by the direct injection of Stx2. Interestingly, Ac-PPP-tet accumulated in the ileal epithelial cells only through its formation of a complex with Stx2. The formation of Ac-PPP-tet-Stx2 complexes in cultured epithelial cells blocked the intracellular transport of Stx2 from the Golgi apparatus to the endoplasmic reticulum, a process that is essential for Stx2 cytotoxicity. Thus, Ac-PPP-tet is the first Stx neutralizer that functions in the intestine by altering the intracellular transport of Stx2 in epithelial cells. Infection with Shiga toxin (Stx)-producing Escherichia coli(STEC) in humans causes gastrointestinal diseases that are often followed by potentially fatal systemic complications such as acute encephalopathy and hemolytic-uremic syndrome (12,22,25,26). Stx is produced in the gut, traverses the epithelium, and passes into the circulation. Circulating Stx then causes vascular damage in specific target tissues such as the brain and the kidney, resulting in systemic complications. For this reason, development of a neutralizer that specifically binds to and inhibits Stx in the gut and/or in the circulation would be a promising therapeutic approach.Stx is classified into two subgroups, Stx1 and Stx2. Stx2 is more closely related to the severity of STEC infections than Stx1 (6,23,31,33). Stx consists of a catalytic A subunit and a pentameric B subunit. The former has 28S rRNA N-glycosidase activity and inhibits eukaryotic protein synthesis, while the latter is responsible for binding to the functional cell surface receptor Gb3 [Gal␣(1-4)-Gal(1-4)-Glc1-ceramide] (11,17,25). The crystal structure of Stx reveals the presence of three distinctive binding sites (i.e., sites 1, 2, and 3) on each B subunit monomer for the trisaccharide moiety of Gb3 (7, 16). Highly selective and potent binding of Stx to Gb3 is attributed mainly to the multivalent interaction between the B subunit pentamer and the trisaccharide. This so-called clustering effect has formed the basis for the development of several synthetic Stx neutralizers that contain the trisaccharide in multiple con-
HighlightsShiga toxin (Stx) rapidly reduces the level of short-lived anti-apoptotic proteins.Stx induces activation of caspase 9 and apoptosis.Proteasome inhibitors prevent the reduction of anti-apoptotic proteins.Proteasome inhibitors suppress Stx-induced apoptosis.Bortezomib prolongs the survival of mice challenged with a lethal dose of Stx.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.