Microporous oxides are inorganic materials with wide applications in separations, ion exchange and catalysis. In such materials, an important determinant of pore size is the number of M (where M = Si, Ge and so on) atoms in the rings delineating the channels. The important faujasite structure exhibits 12-ring structures while those of zeolites, germanates and other materials can be much larger. Recent attention has focused on mesoporous materials with larger pores of nanometre scale; however, with the exception of an inorganic-organic hybrid, these have amorphous pore walls, limiting many applications. Chiral porous oxides are particularly desirable for enantioselective sorption and catalysis. However, they are very rare in microporous and mesoporous materials. Here we describe a mesoporous germanium oxide, SU-M, with gyroidal channels separated by crystalline walls that lie about the G (gyroid) minimal surface as in the mesoporous MCM-48 (ref. 9). It has the largest primitive cell and lowest framework density of any inorganic material and channels that are defined by 30-rings. One of the two gyroidal channel systems of SU-M can be filled with additional oxide, resulting in a mesoporous crystal (SU-MB) with chiral channels.
Heterogeneous palladium catalysts, which are supported on ordered mesoporous silica-carbon nanocomposites, have been applied in water-mediated coupling reactions of chlorobenzene without assistance of any phase-transfer catalysts. Characterization by XRD, TEM, N(2) sorption, FT-IR, TG, XPS, and H(2) chemisorption techniques reveals the highly ordered mesostructure, high surface areas (approximately 345 m(2)/g), large pore volumes (approximately 0.46 cm(3)/g), uniform mesopore sizes (approximately 6.3 nm), hybrid silicate and carbonaceous compositions, and a high dispersion of palladium nanoparticles (about 3 nm) in the mesopores. The catalyst exhibits a high yield for trans-stilbene (approximately 60%) in the Heck coupling reaction of chlorobenzene and styrene at 100 degrees C and for biphenyl (46%) in the Ullmann coupling reaction of chlorobenzene at 30 degrees C, using water as a solvent. When substituted aryl chlorides (hydroxyl, methoxyl, and methyl) are involved in the Ullmann reaction, the yields of symmetrical substituted biphenyl are also higher than 44% (this value reaches 86% for the coupling reaction of 4-chlorophenol) at a low temperature of 30 degrees C. This heterogeneous catalyst is stable, which shows negligible metal leaching, and can be reused more than 20 times. For comparison, the catalytic activities for Pd catalysts supported on pure mesoporous polymeric, carbonaceous, and silicate frameworks are also investigated. The results clearly indicate that the pore wall nature shows great influence on the dispersion of metallic Pd species and, in turn, the catalytic performance.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.