Decision-makers in the architecture, engineering, and construction (AEC) industry lack knowledge about the implementation of digitalisation to generate value. We applied a scenario planning method developed by Schoemaker and Mavaddat to provide decision-makers with information for using digital data and technolo-gies to create value for customers. We aim to theoretically understand how the scenario planning process helps AEC decision-makers to make sense of the fu-ture. Our findings show that boundary spanners are needed for steering the dis-cussions among industry actors toward shared knowledge about the technologi-cal, social, economic and political changes needed at the industry level to opti-mise the benefits of digitalisation. Our findings also show that boundary spanners apply scenario figures as boundary objects to cross knowledge boundaries. Based on our findings, we theoretically conceptualise scenario planning as a boundary-spanning activity that enables AEC decision-makers from different fields to share tacit knowledge and to cross knowledge boundaries. The practical implication is that scenario planning provides a method for AEC decision-makers to make sense of the changes needed to realise the preferred future for the industry.
Increasing global urbanization yields substantial potential for enhanced sustainability through careful management of urban development and optimized resource use efficiency. Nature-based solutions (NBS) can provide a means for cities to successfully navigate the water-energy-climate relationship, thus enhancing urban resilience. Implementation of NBS can improve local or regional economic resilience underpinned by the sustainable use of natural resources. The innovative governance, institutional, business, and finance models and frameworks inherent to NBS implementation also provide a wealth of opportunity for social transformation and increased social inclusiveness in cities. The ultimate benefit of NBS implementation in cities is increased livability, which is typically measured as a function of multiple social, economic and environmental variables. Given the range of different interventions classified as NBS and the cross-sectoral character of their co-benefits, different assessment schemes can be used to evaluate NBS performance and impact. Herein, performance and impact indicators within three robust NBS-and Smart City-related assessment schemes-Mapping and Assessment of Ecosystems and their Services (MAES), Knowledge and Learning Mechanism on Biodiversity and Ecosystem Services (EKLIPSE), and Smart City Performance Measurement Framework (CITYkeys)-were critically analyzed with respect to Sustainable Development Goal (SDG) 11, "Make cities and human settlements inclusive, safe, resilient and sustainable." Each selected assessment scheme was benchmarked with respect to the Inter-Agency Expert Group on SDG Indicators' global indicator framework for the sub-objectives of SDG 11. The alignment between each of the selected NBS assessment schemes and the SDG indicator framework was mapped with particular emphasis on consistency with city-level framework indicators for each SDG 11 sub-objective. The results were illustrated as composite scores describing the alignment of the analyzed NBS and Smart city assessment schemes with the SDG 11 sub-objectives. These results facilitate NBS assessment scheme selection based on alignment between each analyzed assessment scheme and specific SDG 11 sub-objectives. Cities face multiple challenges amidst a complex hierarchy of legislative, Wendling et al.Benchmarking NBS Assessment Against SDG11+ regulatory and other stakeholder obligations. The present study showed that strategic selection of an NBS assessment scheme which closely aligns with one or more sub-objectives within SDG 11 can maximize operational efficiency by exploiting synergies between evaluation schemes.
Mechanical exhaust ventilation system is typical in apartment buildings in Finland. In most buildings the base floor between the first floor apartments and crawl space is not air tight. As the apartments have lower pressure than the crawl space due to ventilation, contaminated air may flow from the crawl space to the apartments. The object of this study was to find out whether a potential air flow from crawl space has an influence on the indoor air quality. The results show that in most cases the concentration of fungal spores was clearly higher in the crawl space than inside the building. The size distribution of fungal spores depended on the fungal species. Correlation between the fungal spores in the crawl space and indoors varied with microbial species. Some species have sources inside the building, which confounds the possible relation between crawl pace and indoor concentrations. Some species, such as Acremonium, do not normally have a source indoors, but its concentration in the crawl space was elevated; our measurements showed also elevated concentrations of Acremonium in the air of the apartments. This consistent finding shows a clear linkage between fungal spores in the indoor air and crawl space. We conclude that a building with a crawl space and pressure difference over the base floor could be a potential risk for indoor air quality in the first floor apartments.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.