The taste receptor type 1 (T1r) family perceives ‘palatable' tastes. These receptors function as T1r2-T1r3 and T1r1-T1r3 heterodimers to recognize a wide array of sweet and umami (savory) tastes in sugars and amino acids. Nonetheless, it is unclear how diverse tastes are recognized by so few receptors. Here we present crystal structures of the extracellular ligand-binding domains (LBDs), the taste recognition regions of the fish T1r2-T1r3 heterodimer, bound to different amino acids. The ligand-binding pocket in T1r2LBD is rich in aromatic residues, spacious and accommodates hydrated percepts. Biophysical studies show that this binding site is characterized by a broad yet discriminating chemical recognition, contributing for the particular trait of taste perception. In contrast, the analogous pocket in T1r3LBD is occupied by a rather loosely bound amino acid, suggesting that the T1r3 has an auxiliary role. Overall, we provide a structural basis for understanding the chemical perception of taste receptors.
Pancreatic ductal adenocarcinoma (PDAC) is among the cancers with the poorest prognoses due to its highly malignant features. BTB and CNC homology 1 (BACH1) has been implicated in RAS-driven tumor formation. We focused on the role of BACH1 in PDAC, more than 90% of which have KRAS mutation. Knockdown of BACH1 in PDAC cell lines reduced cell migration and invasion, in part, by increasing E-cadherin expression, whereas its overexpression showed opposite effects. BACH1 directly repressed the expression of FOXA1 that is known to activate the expression of CDH1 encoding E-cadherin and to inhibit epithelial-to-mesenchymal transition. BACH1 also directly repressed the expression of genes important for epithelial cell adhesion including CLDN3 and CLDN4. In a mouse orthotopic implantation model, BACH1 was required for the high metastatic ability of AsPC-1 cells. IHC analysis of clinical specimens with a newly developed anti-BACH1 mAb revealed that high expression of BACH1 is a poor prognostic factor. These results suggest that the gene regulatory network of BACH1 and downstream genes including CDH1 contribute to the malignant features of PDAC by regulating epithelial-tomesenchymal transition.Significance: Greater understanding of the gene regulatory network involved in epithelial-to-mesenchymal transition of pancreatic cancer cells will provide novel therapeutic targets and diagnostic markers.
CD44 is a transmembrane glycoprotein that regulates a variety of genes related to cell-adhesion, migration, proliferation, differentiation, and survival. A large number of alternative splicing isoforms of CD44, containing various combinations of alternative exons, have been reported. CD44 standard (CD44s), which lacks variant exons, is widely expressed on the surface of most tissues and all hematopoietic cells. In contrast, CD44 variant isoforms show tissue-specific expression patterns and have been extensively studied as both prognostic markers and therapeutic targets in cancer and other diseases. In this study, we immunized mice with CHO-K1 cell lines overexpressing CD44v3-10 to obtain novel anti-CD44 mAbs. One of the clones, C44Mab-5 (IgG1, kappa), recognized both CD44s and CD44v3-10. C44Mab-5 also reacted with oral cancer cells such as Ca9-22, HO-1-u-1, SAS, HSC-2, HSC-3, and HSC-4 using flow cytometry. Moreover, immunohistochemical analysis revealed that C44Mab-5 detected 166/182 (91.2%) of oral cancers. These results suggest that the C44Mab-5 antibody may be useful for investigating the expression and function of CD44 in various cancers.
Podoplanin, a mucin-like transmembrane sialoglycoprotein, promotes platelet aggregation and may be involved in cancer cell migration, invasion, metastasis, and malignant progression. Podoplanin/aggrus is highly expressed in testicular seminoma, suggesting that it may be a sensitive marker for testicular seminomas. Here we investigated the expression of podoplanin in central nervous system (CNS) germ cell tumors (GCTs) by immunohistochemical staining of tumor samples from 62 patients. In 40 of 41 (98%) germinomas (including germinomatous components in mixed GCTs), podoplanin was diffusely expressed on the surface of germinoma cells; lymphocytes, interstitial cells, and syncytiotrophoblastic giant cells were negative for podoplanin. Except for immature teratomas (12/17; 71%), podoplanin expression was absent in non-germinomatous GCTs, including seven teratomas, seven embryonal carcinomas, seven yolk sac tumors, and seven choriocarcinomas. In immature teratomas, focal podoplanin staining was observed in fewer than 10% of immature squamous and columnar epithelial cells. Thus, podoplanin expression may be a sensitive immunohistochemical marker for germinoma in CNS GCTs. As such, it may be useful for diagnosis, for monitoring the efficacy of treatment, and as a potential target for antibody-based therapy.
The telomerase reverse transcriptase is upregulated in the majority of human cancers and contributes directly to cell transformation. Here we report that hTERT is phosphorylated at threonine 249 during mitosis by the serine/threonine kinase CDK1. Clinicopathological analyses reveal that phosphorylation of hTERT at threonine 249 occurs more frequently in aggressive cancers. Using CRISPR/Cas9 genome editing, we introduce substitution mutations at threonine 249 in the endogenous hTERT locus and find that phosphorylation of threonine 249 is necessary for hTERT-mediated RNA dependent RNA polymerase (RdRP) activity but dispensable for reverse transcriptase and terminal transferase activities. Cap Analysis of Gene Expression (CAGE) demonstrates that hTERT phosphorylation at 249 regulates the expression of specific genes that are necessary for cancer cell proliferation and tumor formation. These observations indicate that phosphorylation at threonine 249 regulates hTERT RdRP and contributes to cancer progression in a telomere independent manner.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.