In a genomic screen we isolated the Drosophila gene hugin (hug, cytology 87C1-2) by cross-hybridisation to a human glial cell line-derived neurotrophic factor cDNA. Upon cDNA sequence analysis and in vitro expression assays, the hugin gene was found to encode a signal peptide containing proprotein that was further processed in Schneider-2 cells into peptides similar to known neuropeptides. Two of the peptides were similar to FXPRL-amides (pyrokinins) and to the ecdysis-triggering hormone, respectively. The former displayed myostimulatory activity in a bioassay on the cockroach hyperneural muscle preparation, as well as in the Drosophila heart muscle assay. Hugin is expressed during the later half of embryogenesis and during larval stages in a subgroup of neurosecretory cells of the suboesophageal ganglion. Ubiquitous ectopic hugin expression resulted in larval death predominantly at or shortly after ecdysis from second to third instar, suggesting that at least one of the posttranslational cleavage products affects molting of the larva by interfering with the regulation of ecdysis.
The diazepam-binding inhibitor (DBI; also called acyl coenzyme A-binding protein or endozepine) is a 10-kDa polypeptide found in organisms ranging from yeasts to mammals. It has been shown that DBI and its processing products are involved in various specific biological processes such as GABAA/benzodiazepine receptor modulation, acyl coenzyme A metabolism, steroidogenesis, and insulin secretion. We have cloned and sequenced the Drosophila melanogaster gene and cDNA encoding DBI. The Drosophila DBI gene encodes a protein of 86 amino acids that shows 51 to 56% identity with previously known DBI proteins. The gene is composed of one noncoding 5' and two coding exons and is localized on the chromosomal map at position 65E. Several transcription initiation sites were detected by RNase protection and primer extension experiments.Computer analysis of the promoter region revealed features typical of housekeeping genes, such as the lack of TATA and CCAAT elements. However, in its low GC content and lack of a CpG island, the region resembles promoters of tissue-specific genes. Northern (RNA) analysis revealed that the expression of the DBI gene occurred from the larval stage onwards throughout the adult stage. In adult flies, DBI mRNA and immunoreactivity were detected in the cardia, part of the Malpighian tubules, the fat body, and gametes of both sexes. Developmentally regulated expression, disappearing during metamorphosis, was detected in the larval and pupal brains. No expression was detected in the adult nervous system. On the basis of the expression of DBI in some but not all tissues with high energy consumption, we propose that in D. melanogaster, DBI is involved in energy metabolism in a manner that depends on the substrate used for energy production.The diazepam-binding inhibitor (DBI) is a 10-kDa polypeptide that was first purified from rat brain on the basis of its ability to displace diazepam from the -y-aminobutyric acid receptor type A (GABAA)/benzodiazepine receptor (24). More recently DBI has also been purified from several peripheral organs such as pig intestine (14) and from bovine and rat liver (34,44,47). DBI has been shown to be expressed in several rat tissues (3, 9). The highest expression has been observed in the adrenal gland, liver, and somatic tissue of the testes, while the lowest levels have been detected in spleen, lung, and muscle (34,45,68). Nevertheless, DBI expression is restricted to certain cell types. In the rat brain, DBI is localized in selected neuronal populations, ependymal and glial cells (2, 3). DBIlike peptides have also been found in the central nervous systems of trout (Salmo gairdneri) (39) and frogs (Rana ridibunda) (40). In the adrenal gland, DBI is expressed in cortical cells, whereas chromaffin cells of the medulla are immunonegative (9). DBI and its metabolites octadecaneuropeptide (DBI33_50) and triakontatetraneuropeptide (DBI17-50) are involved in the regulation of multiple biological processes. In rats, intracerebroventricular injection of DBI or one of its metabolit...
The ovarian tumour gene (otu) is required for several processes during Drosophila oogenesis. The locus encodes two protein isoforms that have been proposed to act during different stages of oogenesis. Here we show that the corresponding otu mRNAs display a dynamic pattern of expression during oogenesis. The 4.1 kb mRNA encoding the 104 kDa isoform is expressed throughout adult oogenesis, but is mainly restricted to nurse cells. The 3.2 kb mRNA encoding the 98 kDa protein isoform is selectively localised in the oocyte up to stage 9. Both mRNAs are expressed abundantly in nurse cells at stages 10-11. We propose that the oocyte-specific function of otu is realised by the 98 kDa isoform. We show that the export of the 3.2 kb mRNA from the nurse cell nuclei requires a functional otu protein. The otu protein is also required for the correct distribution of the pumilio and oskar mRNAs, while the Bic-D, K10 and staufen mRNAs are localised in wild type fashion in otu mutants. Furthermore, we have observed a region of homology between the carboxy-terminal part of the otu protein and the mammalian microtubule associated proteins. The more severe the mutation in this region of homology, the more disturbed mRNA distribution is observed in otu mutants.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.