The aim of the present study was to estimate the heat transfer through cutaneous and respiratory evaporation of dairy cows raised in tropical ambient conditions using simple environmental and physiological measures. Twenty-six lactating crossbred cows (7/8 Holstein-Gir) were used, 8 predominantly white and 18 predominantly black. The environmental variables air temperature, relative humidity, black globe temperature, and wind speed were measured. Respiratory rate and coat surface temperature were measured at 0700, 0900, 1100, 1300, and 1500 h. The environmental and physiological data were used to estimate heat loss by respiratory (E) and cutaneous evaporation (E). Results showed that there was variation (P < 0.01) for respiratory rate depending on the times of the day. The highest values were recorded at 1100, 1300, and 1500 h, corresponding to 66.85 ± 10.20, 66.98 ± 7.80, and 65.65 ± 6.50 breaths/min, respectively. Thus, the amount of heat transferred via respiration ranged from 19.21 to 29.42 W/m. There was a variation from 31.6 to 38.8 °C for coat surface temperature; these values reflected a range of 55.52 to 566.83 W/m for heat transfer via cutaneous evaporation. However, throughout the day, the dissipation of thermal energy through the coat surface accounted for 87.9 % total loss of latent heat, and the remainder (12.1 %) was via the respiratory tract. In conclusion, the predictive models based on respiratory rate and coat surface temperature may be used to estimate the latent heat loss in dairy cows kept confined in tropical ambient conditions.
In this study we investigated the effect of glutamine and glutamic acid inclusion in the diet of weaned piglets subjected to cold stress and thermoneutral environment. Sixty-four weaned piglets were assessed from 28 to 65 days of age. A completely randomised design consisting of a 2 × 2 factorial arrangement was tested – environments (thermoneutral and cold stress) and diets (control and L-glutamine + L-glutamic acid (G + GA)). Performance, relative organ weight and carcass yield, and morphology of the intestinal mucosa were assessed. Supplementing the diets with G + GA reduced feed intake under both environments. This was associated with a decline in growth rate for piglets in the thermoneutral environment but not in the cold environment (P < 0.002). Feed efficiency was lower for piglets offered the control diets in the cold environment, but was significantly improved (24.6%) by G + GA supplementation in the cold but not the thermoneutral environment (P < 0.001). G + GA supplementation decreased small intestinal length and altered intestinal morphology with the highest villus/crypt depth ratio observed in piglets offered the G + GA supplemented diet in the cold environment. In summary, glutamine and glutamic acid diets mitigated the effects of cold stress on the intestinal mucosa and performance of weaned piglets.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.