Natural fibers today are a popular choice for applications in composite manufacturing.Based on the sustainability benefits, biofibers such as plant fibers are replacing synthetic fibers in composites. These fibers are used to manufacture several biocomposites. The chemical composition and properties of each of the fibers changes, which demands the detailed comparison of these fibers. The reinforcement potential of natural fibers and their properties have been described in numerous papers. Today, high performance biocomposites are produced from several years of research. Plant fibers, particularly bast and leaf, find applications in automotive industries. While most of the other fibers are explored in lab scales they have not yet found large-scale commercial applications. It is necessary to also consider other fibers such as ones made from seed (coir) and animals (chicken feather) as they are secondary or made from waste products. Few plant fibers such as bast fibers are often reviewed briefly but other plant and animal fibers are not discussed in detail. This review paper discusses all the six types of plant fibers such as bast, leaf, seed, straw, grass, and wood, together with animal fibers and regenerated cellulose fibers. Additionally, the review considers developments dealing with natural fibers and their composites. The fiber source, extraction, availability, type, composition, and mechanical properties are discussed. The advantages and disadvantages of using each biofiber are discussed. Three fabric architectures such as nonwoven, woven and knitted have been briefly discussed. Finally, the paper presents the overview of the results from the composites made from each fiber with suitable references for in-depth studies.
Most developments in the area of natural fibre reinforced composites have focused on random discontinuous fibre composite systems. The development of continuous fibre reinforced composites is, however, essential for manufacturing materials, which can be used in load-bearing/structural applications. The current work aims to develop high-performance natural fibre composite systems for structural applications using continuous textile reinforcements like UD-tapes or woven fabrics. One of the main problems in this case is the optimisation of the yarn to be used to manufacture the textile reinforcement. Low twisted yarns display a very low strength when tested dry in air and therefore they cannot be used in processes such as pultrusion or textile manufacturing routes. On the other hand, by increasing the level of twist, a degradation of the mechanical properties is observed in impregnated yarns (e.g., unidirectional composites) similar to off-axis composites. Therefore, an optimum twist should be used to balance processability and mechanical properties. Subsequently, different types of fabrics (i.e., biaxial plain weaves, unidirectional fabrics and non-crimp fabrics) were produced and evaluated as reinforcement in composites manufactured by well established manufacturing techniques such as hand lay-up, vacuum infusion, pultrusion and resin transfer moulding (RTM). Clearly, as expected, the developed materials cannot directly compete in terms of strength with glass fibre composites. However, they are clearly able to compete with these materials
Composite fibers from poly(lactic acid) (PLA) and hydroxyapatite (HA) particles were prepared using melt spinning. Different loading concentrations of HA particles (i.e., 5, 10, 15, and 20 wt %) in the PLA fibers and solid-state draw ratios (SSDRs) were evaluated in order to investigate their influence on the fibers' morphology and thermal and mechanical properties. A scanning electron microscopy investigation indicated that the HA particles were homogeneously distributed in the PLA fibers. It was also revealed by atomic force microscopy and Fourier transform infrared spectroscopy that HA particles were located on the fiber surface, which is of importance for their intended application in biomedical textiles. Our results also suggest that the mechanical properties were independent of the loading concentration of the HA particles and that the SSDR played an important role in improving the mechanical properties of the composite fibers.
An oxidative chemical vapor deposition (OCVD) process was used to coat flexible textile fiber (viscose) with highly conductive polymer, poly (3,4‐ethylenedioxythiophene) (PEDOT) in presence of ferric (III) chloride (FeCl3) oxidant. OCVD is a solvent free process used to get uniform, thin, and highly conductive polymer layer on different substrates. In this paper, PEDOT coated viscose fibers, prepared under specific conditions, exhibited high conductivity 14.2 S/cm. The effects of polymerization conditions, such as polymerization time, oxidant concentration, dipping time of viscose fiber in oxidant solution, and drying time of oxidant treated viscose fiber, were carefully investigated. Scanning electron microscopy (SEM) and FT‐IR analysis revealed that polymerization of PEDOT on surface of viscose fiber has been taken place and structural analysis showed strong interactions between PEDOT and viscose fiber. Thermogravimetric analysis (TGA) was employed to investigate the amount of PEDOT in PEDOT coated viscose fiber and interaction of PEDOT with viscose fiber. The effect of PEDOT coating on the mechanical properties of the viscose fiber was evaluated by tensile strength testing of the coated fibers.The obtained PEDOT coated viscose fiber having high conductivity, could be used in smart clothing for medical and military applications, heat generation, and solar cell demonstrators. Copyright © 2010 John Wiley & Sons, Ltd.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.