The rise of wearable sensors to measure lactate content in human sweat during sports activities has attracted the attention of physiologists given the potential of these “analytical tools” to provide real-time information. Beyond the assessment of the sensing technology per se , which, in fact, has not rigorously been validated yet in controlled conditions, there are many open questions about the true usefulness of such wearable sensors in real scenarios. On the one hand, the evidence for the origin of sweat lactate (e.g., via the sweat gland, derivation from blood, or other alternative mechanisms), its high concentration (1–25 mM or even higher) compared to levels in the blood, and the possible correlation between different biofluids (particularly blood) is rather contradictory and generates vivid debate in the field. On the other hand, it is important to point out that accurate detection of sweat lactate is highly dependent on the procedure used to collect and/or reach the fluid, and this can likely explain the large discrepancies reported in the literature. In brief, this paper provides our vision of the current state of the field and a thoughtful evaluation of the possible reasons for present controversies, together with an analysis of the impact of wearable sweat lactate sensors in the physiological context. Finally, although there is not yet overwhelming scientific evidence to provide an unequivocal answer to whether wearable sweat lactate sensors can contribute to sports physiology, we still understand the importance to bring this challenging question up-front to create awareness and guidance in the development, validation, and implementation of wearable sensors.
BackgroundThis study examined the effects of different levels of compression (0, 20 and 40 mmHg) produced by leg garments on selected psycho-physiological measures of performance while exposed to passive vibration (60 Hz, amplitude 4-6 mm) and performing 3-min of alpine skiing tuck position.MethodsPrior to, during and following the experiment the electromygraphic (EMG) activity of different muscles, cardio-respiratory data, changes in total hemoglobin, tissue oxygenation and oscillatory movement of m. vastus lateralis, blood lactate and perceptual data of 12 highly trained alpine skiers were recorded. Maximal isometric knee extension and flexion strength, balance, and jumping performance were assessed before and after the experiment.ResultsThe knee angle (−10°) and oscillatory movement (−20-25.5%) were lower with compression (P < 0.05 in all cases). The EMG activities of the tibialis anterior (20.2-28.9%), gastrocnemius medialis (4.9-15.1%), rectus femoris (9.6-23.5%), and vastus medialis (13.1-13.7%) muscles were all elevated by compression (P < 0.05 in all cases). Total hemoglobin was maintained during the 3-min period of simulated skiing with 20 or 40 mmHg compression, but the tissue saturation index was lower (P < 0.05) than with no compression. No differences in respiratory parameters, heart rate or blood lactate concentration were observed with or maximal isometric knee extension and flexion strength, balance, and jumping performance following simulated skiing for 3 min in the downhill tuck position were the same as in the absence of compression.ConclusionsThese findings demonstrate that with leg compression, alpine skiers could maintain a deeper tuck position with less perceived exertion and greater deoxygenation of the vastus lateralis muscle, with no differences in whole-body oxygen consumption or blood lactate concentration. These changes occurred without compromising maximal leg strength, jumping performance or balance. Accordingly, our results indicate that the use of lower leg compression in the range of 20-40 mmHg may improve alpine skiing performance by allowing a deeper tuck position and lowering perceived exertion.
HR was unaffected by the continuously changing exercise intensity; however, TSI reflected the alternations in V̇O. Recently used exclusively for scientific purposes, this NIRS-based variable may offer a more accurate alternative than HR to monitor running intensity in the future, especially for training and competition in hilly terrain.
Pacing strategies in cross-country skiing have been investigated in several studies. However, none of the previous studies have been verified by collected skiing data giving the skiing velocities along a measured track. These can be used to calculate the propulsive power output. Collected real-time positioning data from a cross-country sprint skiing race were used to estimate the propulsive power by applying a power balance model. Analyses were made for the time-trial and the final for one female and one male skier. The average propulsive power over the whole race times were 311 and 296 W during the time trial and 400 and 386 W during the final, for the female and male skier, respectively. Compared to the average propulsive power over the whole race, the average active propulsive phases were calculated as 33 and 44% higher in the time trials and 36 and 37% higher in the finals for the female and male, respectively. The current study presents a novel approach to use real-time positioning data to estimate continuous propulsive power during cross-country sprint skiing, enabling in-depth analyses of power output and pacing strategies.
Our aims were to measure anthropometric and oxygen uptake ( O 2 ) variables in the laboratory, to measure kinetic and stride characteristics during a trail running time trial, and then analyse the data for correlations with trail running performance. Runners (13 men, 4 women: mean age: 29 ± 5 years; stature: 179.5 ± 0.8 cm; body mass: 69.1 ± 7.4 kg) performed laboratory tests to determine O 2 max , running economy (RE), and anthropometric characteristics. On a separate day they performed an outdoor trail running time trial (two 3.5 km laps, total climb: 486 m) while we collected kinetic and time data. Comparing lap 2 with lap 1 (19:40 ± 1:57 min vs. 21:08 ± 2:09 min, P < 0.001), runners lost most time on the uphill sections and least on technical downhills (-2.5 ± 9.1 s). Inter-individual performance varied most for the downhills (CV > 25%) and least on flat terrain (CV < 10%). Overall stride cycle and ground contact time (GCT) were shorter in downhill than uphill sections (0.64 ± 0.03 vs. 0.84 ± 0.09 s; 0.26 ± 0.03 vs. 0.46 ± 0.90 s, both P < 0.001). Force impulse was greatest on uphill (248 ± 46 vs. 175 ± 24 Ns, P < 0.001) and related to GCT ( r = 0.904, P < 0.001). Peak force was greater during downhill than during uphill running (1106 ± 135 vs. 959 ± 104 N, P < 0.01). Performance was related to absolute and relative O 2 max ( P < 0.01), vertical uphill treadmill speed ( P < 0.001) and fat percent ( P < 0.01). Running uphill involved the greatest impulse per step due to longer GCT while downhill running generated the highest peak forces. O 2 max , vertical running speed and fat percent are important predictors for trail running performance. Performance between runners varied the most on downhills throughout the course, while pacing resembled a reversed J pattern. Future studies should focus on longer competition distances to verify these findings and with application of measures of 3D kinematics.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.