In this paper, two metaheuristic methods, genetic algorithm and particle swarm optimization, are proposed to determine the optimal locations, sizes and power factors of single and double distributed generation units. In line with the 2050 carbon neutral goal, the aim was to integrate renewable distributed energy sources such as photovoltaic panels and wind turbines into the distribution system with a high penetration level. In contrast to most studies based on constant loads and dispatchable generations, an application considering the seasonal uncertainties of generation and consumption was performed to minimize the annual energy losses and voltage deviations of the distribution network. In addition, dispatchable, controllable and fuel-based conventional resources were allocated to compare the contributions of renewable resources. These seasonal case studies with various constraints were applied to IEEE 33-bus radial distribution network. To verify the feasibility and robustness of the proposed algorithms, case studies for peak loads were created and compared with the literature studies. While all distributed generation sources were operated at both unity and optimum power factor in all case studies, zero power factor and leading power factor scenarios were examined for a peak load only. Photovoltaic applications without energy storage technologies have not been very efficient because of the uneven daily distribution of solar irradiance, especially insufficient irradiation in the evening and excessive irradiation at noon. However, wind energy applications are more reliable and feasible, because the wind speed distribution is relatively more uniform than that of solar irradiation, both seasonally and daily. In all cases, operating distributed generation sources at the optimal power factor provided better results than those operating at unity power factor. As a result, wind turbines operating at optimal power factors have been found to contribute better than photovoltaic systems and are almost as good as conventional sources with controllable power output. While both proposed algorithms yielded better results than those in the literature, particle swarm optimization was better than genetic algorithm in terms of providing the best solution, faster convergence and shorter running time.
Many approaches about the planning and operation of power systems, such as network reconfiguration and distributed generation (DG), have been proposed to overcome the challenges caused by the increase in electricity consumption. Besides the positive effects on the grid, contributions on environmental pollution and other advantages, the rapid developments in renewable energy technologies have made the DG resources an important issue, however, improper DG allocation may result in network damages. A lot of studies have been practised with analytical and heuristic methods based on load flow for optimal DG integration to the network. This novel method based on estimation is proposed to determine the size of DG and its effects on the network to get rid of the coercive and time-consuming load flow techniques. Machine learning algorithms, such as Linear Regression, Artificial Neural Network, Support Vector Regression, K-Nearest Neighbor, and Decision Tree, have been used for the estimations and have been applied to well-known test systems, such as IEEE 12-bus, 33-bus, and 69-bus distribution systems. The accuracy of the proposed estimation methods has been verified with R-squared and mean absolute percentage error. Results show that the proposed DG allocation method is effective, applicable, and flexible.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.