Although lycopene, a major carotenoid component of tomatoes, has been suggested to attenuate the risk of breast cancer, the underlying preventive mechanism remains to be determined. Moreover, it is not known whether there are any differences in lycopene activity among different subtypes of human breast cancer cells. Using ER/PR positive MCF-7, HER2-positive SK-BR-3 and triple-negative MDA-MB-468 cell lines, we investigated the cellular and molecular mechanism of the anticancer activity of lycopene. Lycopene treatment for 168 consecutive hours exhibited a time-dependent and dose-dependent anti-proliferative activity against these cell lines by arresting the cell cycle at the G0/G1 phase at physiologically achievable concentrations found in human plasma. The greatest growth inhibition was observed in MDA-MB-468 where the sub-G0/G1 apoptotic population was significantly increased, with demonstrable cleavage of PARP. Lycopene induced strong and sustained activation of the ERK1/2, with concomitant cyclin D1 suppression and p21 upregulation in these three cell lines. In triple negative cells, lycopene inhibited the phosphorylation of Akt and its downstream molecule mTOR, followed by subsequent upregulation of proapoptotic Bax without affecting anti-apoptotic Bcl-xL. Taken together, these data indicate that the predominant anticancer activity of lycopene in MDA-MB-468 cells suggests a potential role of lycopene for the prevention of triple negative breast cancer.
Although pterostilbene, a natural analog of resveratrol, has potent antitumor activity against several human cancer types, the possible inhibitory mechanisms against subtypes of human breast cancer with different hormone receptor and human epidermal growth factor receptor 2 (HER2) status remain unknown. We investigated the anticancer activity of pterostilbene using three subtypes of breast cancer cell lines. Pterostilbene treatment exhibited a dose-dependent antiproliferative activity, with the greatest growth inhibition observed in triple-negative MDA-MB-468 cells. Although pterostilbene arrested cell-cycle progression at the G/G phase regardless of breast cancer subtype, its apoptosis-inducing activity was highly apparent in MDA-MB-468 cells. Pterostilbene induced strong and sustained activation of extracellular signal-regulated kinase (ERK) 1/2, with concomitant cyclin D1 suppression and p21 up-regulation, and inhibited the phosphorylation of AKT and mammalian target of rapamycin (mTOR), followed by subsequent up-regulation of BAX without affecting B-cell lymphoma-extra large (BCL-xL). Oral administration of pterostilbene significantly suppressed tumor growth in nude mice xenotransplanted with MDA-MB-468 cells. These data suggest a potential role of pterostilbene for prevention and treatment of human breast cancer, especially of triple-negative breast cancer.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.