The analysis of social sentiment expressed on the Web is becoming increasingly relevant to a variety of applications, and it is important to understand the underlying mechanisms which drive the evolution of sentiments in one way or another, in order to be able to predict these changes in the future. In this paper, we study the dynamics of news events and their relation to changes of sentiment expressed on relevant topics. We propose a novel framework, which models the behavior of news and social media in response to events as a convolution between event's importance and media response function, specific to media and event type. This framework is suitable for detecting time and duration of events, as well as their impact and dynamics, from time series of publication volume. These data can greatly enhance events analysis; for instance, they can help distinguish important events from unimportant, or predict sentiment and stock market shifts. As an example of such application, we extracted news events for a variety of topics and then correlated this data with the corresponding sentiment time series, revealing the connection between sentiment shifts and event dynamics.
City-scale events may easily attract half a million of visitors in hundreds of venues over just a few days. Which are the most attended venues? What do visitors think about them? How do they feel before, during and after the event? These are few of the questions a city-scale event manger would like to see answered in real-time. In this paper, we report on our experience in social listening of two city-scale events (London Olympic Games 2012, and Milano Design Week 2013) using the Streaming Linked Data Framework.
Our study addresses the problem of large-scale contradiction detection and management, from data extracted from the Web. We describe the first systematic solution to the problem, based on a novel statistical measure for contradictions, which exploits first-and second-order moments of sentiments. Our approach enables the interactive analysis and online identification of contradictions under multiple levels of time granularity. The proposed algorithm can be used to analyze and track opinion evolution over time and to identify interesting trends and patterns. It uses an incrementally updatable data structure to achieve computational efficiency and scalability. Experiments with real datasets show promising time performance and accuracy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.