Controlling acoustic fields is crucial in diverse applications such as loudspeaker design, ultrasound imaging and therapy or acoustic particle manipulation. The current approaches use fixed lenses or expensive phased arrays. Here, using a process of analogue-to-digital conversion and wavelet decomposition, we develop the notion of quantal meta-surfaces. The quanta here are small, pre-manufactured three-dimensional units—which we call metamaterial bricks—each encoding a specific phase delay. These bricks can be assembled into meta-surfaces to generate any diffraction-limited acoustic field. We apply this methodology to show experimental examples of acoustic focusing, steering and, after stacking single meta-surfaces into layers, the more complex field of an acoustic tractor beam. We demonstrate experimentally single-sided air-borne acoustic levitation using meta-layers at various bit-rates: from a 4-bit uniform to 3-bit non-uniform quantization in phase. This powerful methodology dramatically simplifies the design of acoustic devices and provides a key-step towards realizing spatial sound modulators.
Aspiration of oral contents can lead to pneumonia, which is a major cause of death among elderly adults susceptible to swallowing impairments. Tongue microbiota are a dominant source of oral microbial populations that are ingested with saliva. This large-scale population-based study revealed variations in the tongue microbiota among community-dwelling elderly adults. The total bacterial density was independent of the conditions of teeth surrounding the tongue, whereas the microbiota composition, especially the relative abundances of predominant commensals, showed an association with tooth conditions. Our results demonstrate that the elderly with fewer teeth, poorer dental hygiene, and more dental caries experience constantly ingest more dysbiotic microbiota, which could be harmful for their respiratory health.
Increasing attention is being focused on evaluating the salivary microbiota as a promising method for monitoring oral health; however, its bacterial composition greatly differs from that of dental plaque microbiota, which is a dominant etiologic factor of oral diseases. This study evaluated the relative abundance of subgingival plaque-specific bacteria in the salivary microbiota and examined a relationship between the abundance and severity of periodontal condition in patients with periodontitis. Four samples (subgingival and supragingival plaques, saliva, and tongue coating) per each subject were collected from 14 patients with a broad range of severity of periodontitis before periodontal therapy. The bacterial composition was analyzed by 16S rRNA gene amplicon sequencing using Ion PGM. Of the 66 species-level operational taxonomic units (OTUs) representing the mean relative abundance of ≥ 1% in any of the four niches, 12 OTUs corresponding to known periodontal pathogens, including Porphyromonas gingivalis, were characteristically predominant in the subgingival plaque and constituted 37.3 ± 22.9% of the microbiota. The total relative abundance of these OTUs occupied only 1.6 ± 1.2% of the salivary microbiota, but significantly correlated with the percentage of diseased sites (periodontal pocket depth ≥ 4 mm; r = 0.78, P < 0.001), in addition to the abundance of subgingival plaque microbiota (r = 0.61, P = 0.02). After periodontal therapy, the total relative abundance of these 12 OTUs was evaluated as well as before periodontal therapy and reductions of the abundance through periodontal therapy were strongly correlated in saliva and subgingival plaque (r = 0.81, P < 0.001). Based on these results, salivary microbiota might be a promising target for the evaluation of subgingival plaque-derived bacteria representing the present condition of periodontal health.
The salivary microbiota is constantly swallowed and delivered to the digestive tract. These bacteria may be associated with gastrointestinal diseases. This case-control study examined the salivary microbiota in patients with digestive tract cancer (DTC) and evaluated their differential distribution based on the cancer sites. We collected saliva samples from 59 patients with cancer in any part of the digestive tract (tongue/pharynx, esophagus, stomach, and large intestine) and from 118 age- and sex-matched control subjects. There was no significant difference in periodontal status between DTC patients and control subjects ( P = 0.72). We examined the bacterial diversity and composition in saliva by 16S ribosomal RNA gene sequencing. Salivary bacterial diversity in DTC patients was significantly higher than that in control subjects [number of operational taxonomic units (OTUs), P = 0.02; Shannon index, P < 0.01; Chao1, P = 0.04]. Eleven differentially abundant OTUs in DTC patients were identified using the linear discriminant analysis effect size (LEfSe) method. Based on the cancer sites, the diversity of salivary bacteria was especially higher in tongue/pharyngeal or esophageal cancer patients than in control subjects. Among the 11 differentially abundant OTUs in DTC patients, an OTU corresponding to Porphyromonas gingivalis was more abundant in the saliva of all groups of DTC patients compared to that in control subjects, and an OTU corresponding to Corynebacterium species was more abundant in all groups other than gastric cancer patients ( P < 0.01). In addition, the relative abundances of OTUs corresponding to Fusobacterium nucleatum , Streptococcus parasanguinis II, and Neisseria species were significantly higher in tongue/pharyngeal cancer patients compared to their abundances in control subjects ( P < 0.01). The relative abundance of an OTU corresponding to the Neisseria species was also significantly higher in gastric cancer patients and that of an OTU corresponding to Actinomyces odontolyticus was significantly higher in colorectal cancer patients ( P < 0.01). These results suggest that the salivary microbiota might be associated with various digestive tract cancers.
The tongue microbiota type was significantly associated with an increased mortality risk from pneumonia in nursing home residents.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.