In this study, a closed-field unbalanced magnetron sputtering system, which is environmentally friendly and has high deposition efficiency, was used to deposit CrSi coatings on 316 austenitic stainless steel. This system utilised separate Cr and Si targets, and the appropriate content of Cr and Si of the coatings was adjusted by changing the currents applied to the targets. A series of CrSi coatings with different Si/Cr ratios were produced, and their oxidation behaviour at elevated temperatures was investigated. By analysing the weight gain, surface morphology and microstructure, composition and phase constituents, the oxidation behaviour at 600 °C, 700 °C and 800 °C was investigated and the optimized coating to protect the stainless steel has been identified. The outcome of the research indicated that a small amount of Si (between 4–7 at.%) in Cr coatings is effective in protecting the austenitic stainless steel against oxidation at high temperatures, while a high Si content (around 10 at.% or more) makes the coating more brittle and prone to cracking or delamination during oxidation at 800 °C.
Thermoelectric (TE) technology attracts much attention due to the fact it can convert thermal energy into electricity and vice versa. Thin-film TE materials can be synthesized on different kinds of substrates, which offer the possibility of the control of microstructure and composition to higher TE power, as well as the development of novel TE devices meeting flexible and miniature requirements. In this work, we use magnetron sputtering to deposit N-type and P-type BiTe-based thin films on silicon, glass, and Kapton HN polyimide foil. Their morphology, microstructure, and phase constituents are studied by SEM/EDX, XRD, and TEM. The electrical conductivity, thermal conductivity, and Seebeck coefficient of the thin film are measured by a special in-plane advanced test system. The output of electrical power (open-circuit voltage and electric current) of the thin film is measured by an in-house apparatus at different temperature gradient. The impact of deposition parameters and the thickness, width, and length of the thin film on the power output are also investigated for optimizing the thin-film flexible TE device to harvest thermal energy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.