Due to increasing stringency of water legislation and extreme consequences that failure to detect some contaminants in water can involve, there has been a strong interest in developing electrochemical biosensors for algal toxin detection during the past decade, evidenced by literature increasing from 2 journal papers pre-2009 to 24 between 2009 and 2018. In this context, this review has summarized recent progress of successful algal toxin detection in water using electrochemical biosensing techniques. Satisfactory detection recoveries using real environmental water samples and good sensor repeatability and reproducibility have been achieved, along with some excellent limit-of-detection (LOD) reported. Recent electrochemical biosensor literature in algal toxin detection is compared and discussed to cover three major design components: (1) biorecognition elements, (2) electrochemical read-out techniques, and (3) sensor electrodes and signal amplification strategy. The recent development of electrochemical biosensors has provided one more step further toward quick in situ detection of algal toxins in the contamination point of the water source. In the end, we have also critically reviewed the current challenges and research opportunities regarding electrochemical biosensors for algal toxin detection that need to be addressed before they attain commercial viability.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.