As the proliferation of electric vehicles continues to grow, it is becoming important to understand the impacts that electric vehicle charging will have on distribution assets. EV chargers are non-linear, multi-state loads. This manuscript presents a design method for the modeling of EV charging units using a VHDL-AMS simulation environment, per IEEE Standard 1076.1. Voltage and current data collected from in-service EV charging stations were used to create harmonic profiles of the EV charging units. From these profiles, generalized models for both Level 2 and Level 3 EV chargers were created. These models were validated within a larger system context using the IEEE 13 node test feeder. A VHDL-AMS tool has been created so distribution engineers may assess the impacts that EV chargers have on distribution assets. The tool may also be used to assist with the selection of transformers, conductors, and protection equipment.
In distribution system planning, it is essential to understand the impacts that EVs and the power electronics associated with their charging units may have on power distribution networks. A deeper understanding of these matters aids utilities in the design of electrical power systems, including asset planning, an example being selection of k-type rating for distribution transformers. In this paper we present a method utilizing a VHDL-AMS environment for modeling these nonlinear, time-varying loads.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.