The reproducing kernel particle method (RKPM) is a meshfree method for computational solid mechanics that can be tailored for an arbitrary order of completeness and smoothness. The primary advantage of RKPM relative to standard finite-element (FE) approaches is its capacity to model large deformations, material damage, and fracture. Additionally, the use of a meshfree approach offers great flexibility in the domain discretization process and reduces the complexity of mesh modifications such as adaptive refinement. We present an overview of the RKPM implementation in the Sierra/SolidMechanics analysis code, with a focus on verification, validation, and software engineering for massively parallel computation. Key details include the processing of meshfree discretizations within a FE code, RKPM solution approximation and domain integration, stress update and calculation of internal force, and contact modeling. The accuracy and performance of RKPM are evaluated using a set of benchmark problems. Solution verification, mesh convergence, and parallel scalability are demonstrated using a simulation of wave propagation along the length of a bar. Initial model validation is achieved through simulation of a Taylor bar impact test. The RKPM approach is shown to be a viable alternative to standard FE techniques that provides additional flexibility to the analyst community.
This special issue is dedicated to Steve Attaway, who passed away on February 28, 2019. Steve Attaway worked at Sandia National Laboratories in Albuquerque, NM, for over 30 years making significant contributions in highperformance computing, shock physics, meshfree methods, the geosciences, concrete mechanics, and blast effects on structures. Steve's early contributions in meshfree methods included stability analysis of smoothed particle hydrodynamics (SPH) (Swegle, J.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.