The low-threshold calcium current (IT) underlies burst generation in thalamocortical (TC) relay cells and plays a central role in the genesis of synchronized oscillations by thalamic circuits. Here we have combined in vitro recordings and computational modeling techniques to investigate the consequences of dendritically located IT in TC cells. Simulations of a reconstructed TC cell were compared with the recordings obtained in the same cell to constrain the values of its passive parameters. T-current densities in soma and proximal dendrites were then estimated by matching the model to voltage-clamp recordings obtained in dissociated TC cells, which lack most of the dendrites. The distal dendritic T-current density was constrained by recordings in intact TC cells, which show 5-14 times larger peak T-current amplitudes compared with dissociated cells. Comparison of the model with the recordings of the same cell constrained further the T-current density in dendrites, which had to be 4.5-7.6 times higher than in the soma to reproduce all experimental results. Similar conclusions were reached using a simplified three-compartment model. Functionally, the model shows that the same amount of T-channels can lead to different bursting behaviors if they are exclusively somatic or distributed throughout the dendrites. In conclusion, this combination of models and experiments shows that dendritic T-currents are necessary to reproduce low-threshold calcium electrogenesis in TC cells. Dendritic T-current may also have significant functional consequences, such as an efficient modulation of thalamic burst discharges by corticothalamic feedback.
GABA-ergic thalamic reticular neurons function generically or singularly in a state-dependent manner: during quiet sleep they synchronously and rhythmically inhibit thalamocortical neurons (TCNs) via bursts, thereby eliciting the low-threshold Ca 2+ potentials in TCNs that are crucial to oscillatory network behavior in the thalamo-reticulo-cortical system; during wakefulness they shape the flux of ascending sensory information by inhibiting TCNs with asynchronous and arrhythmic single-spikes. To investigate how the reticulo-thalamic synapses, which occur throughout TCN dendrites, are able to effect such disparate functions, we have: (1) used a 1416 compartment model of a 3D reconstructed TCN; (2) triggered dendritic miniature (TTX-independent) and unitary (single-afferent) conductance-based synaptic events, and (3) recorded axial currents and voltage transients in all 1416 compartments simultaneously. For synapses at all dendritic locations, more than 79% of the charge transfer reached the soma, where it dispersed into other dendritic trees to return to the extracellular space. In accord, dendritic synapses in 80% of the arbor induced voltage responses that were severely attenuated at the soma (>75% loss). Spatio-temporal aspects of distributed postsynaptic responses were examined as well. Except for synapses in the 13 most proximal compartments, the amplitude and phase of the voltage responses degraded rapidly within a focal region that did not extend beyond the host tree, and was limited most often to a subtree. The bulk response (outside the focal region) was highly synchronous and uniform. Interestingly, there were not 1403 different focal regions, but only 20, each clearly distinct from the rest and sharply delineated. Structural attributes of the arbor determined their boundaries. Boundaries were invariant when the analysis was repeated on rescaled versions (length, diameter) of the reconstructed arbor. Unitary events also induced focal/bulk structures for both burst and single-spike triggers -paradigms that correspond to single-afferent drives during quiet sleep and arousal, respectively. Such qualities differ dramatically from previously proposed motifs of dendritic clustering, each of which carried nonlinear sensitivities to parameter values. We propose that dendritic clustering underlies the role of reticulo-thalamic synapses in the early processing of ascending sensory information and that bulk responses contribute robustness to the induction and maintenance oscillations in the thalamo-reticulo-cortical network.
GABA-ergic thalamic reticular neurons function generically or singularly in a state-dependent manner: during quiet sleep they synchronously and rhythmically inhibit thalamocortical neurons (TCNs) via bursts, thereby eliciting the low-threshold Ca 2+ potentials in TCNs that are crucial to oscillatory network behavior in the thalamo-reticulo-cortical system; during wakefulness they shape the flux of ascending sensory information by inhibiting TCNs with asynchronous and arrhythmic single-spikes. To investigate how the reticulo-thalamic synapses, which occur throughout TCN dendrites, are able to effect such disparate functions, we have: (1) used a 1416 compartment model of a 3D reconstructed TCN; (2) triggered dendritic miniature (TTX-independent) and unitary (single-afferent) conductance-based synaptic events, and (3) recorded axial currents and voltage transients in all 1416 compartments simultaneously. For synapses at all dendritic locations, more than 79% of the charge transfer reached the soma, where it dispersed into other dendritic trees to return to the extracellular space. In accord, dendritic synapses in 80% of the arbor induced voltage responses that were severely attenuated at the soma (>75% loss). Spatio-temporal aspects of distributed postsynaptic responses were examined as well. Except for synapses in the 13 most proximal compartments, the amplitude and phase of the voltage responses degraded rapidly within a focal region that did not extend beyond the host tree, and was limited most often to a subtree. The bulk response (outside the focal region) was highly synchronous and uniform. Interestingly, there were not 1403 different focal regions, but only 20, each clearly distinct from the rest and sharply delineated. Structural attributes of the arbor determined their boundaries. Boundaries were invariant when the analysis was repeated on rescaled versions (length, diameter) of the reconstructed arbor. Unitary events also induced focal/bulk structures for both burst and single-spike triggers -paradigms that correspond to single-afferent drives during quiet sleep and arousal, respectively. Such qualities differ dramatically from previously proposed motifs of dendritic clustering, each of which carried nonlinear sensitivities to parameter values. We propose that dendritic clustering underlies the role of reticulo-thalamic synapses in the early processing of ascending sensory information and that bulk responses contribute robustness to the induction and maintenance oscillations in the thalamo-reticulo-cortical network.
Techniques of in vitro whole-cell recording and compartmental modeling were combined to investigate dendritic structure and calcium currents in individual thalamocortical neurons. Voltage-clamp recordings of I T obtained in intact and dissociated ventrobasal neurons were used to constrain I T conductances and passive parameters incorporated in morphorealistic models. High dendritic I T densities were found necessary to establish congruent model behavior. Several methodologies based on axial resistance conservation were developed to algorithmically reduce thalamocortical morphology into a behaviorally congruent l o w-order compartmental model. This type of simpli ed model is suitable for investigating the functional role played by distal Tcurrent localization at the network level in sleep oscillations and epilepsy.
Broad amplitude variability and skewed distributions are characteristic features of quantal synaptic currents (minis) at central synapses. The relative contributions of the various underlying sources are still debated. Through computational models of thalamocortical neurons, we separated intra-from extra-synaptic sources. Our simulations indicate that the external factors of local input resistance and dendritic filtering generate equally small amounts of negatively skewed synaptic variability. The ability of these two factors to reduce positive skew increased as their contribution to variability increased, which in control trials for morphological, biophysical, and experimental parameters never exceeded 10% of the range. With these dendritic factors ruled out, we tested multiple release models, which led to distributions with clearly non-physiological multiple peaks. We conclude that intra-synaptic organization is the primary determinant of synaptic variability in thalamocortical neurons and, due to extra-synaptic mechanisms, is more potent than the data suggested. Thalamortical neurons, especially in rodents, constitute a remarkably favorable system for molecular genetic studies of synaptic variability and its functional consequence.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.