Secondary forests are promoted as having pivotal roles in reversing the tropical extinction crisis. While secondary forests recover carbon and species over time, a key question is whether phylogenetic diversity—the total evolutionary history across all species within a community—also recovers. Conserving phylogenetic diversity protects unique phenotypic and ecological traits, and benefits ecosystem functioning and stability. We examined the extent to which avian phylogenetic diversity recovers in secondary forests in the Colombian Chocó-Andes. sesPD, a measure of phylogenetic richness corrected for species richness, recovered to old-growth forest levels after ~ 30 years, while sesMPD, a measure of the phylogenetic distance between individuals in a community, recovered to old-growth levels even within young secondary forest. Mean evolutionary distinctiveness also recovered rapidly in secondary forest communities. Our results suggest that secondary forests can play a vital role in conserving distinct evolutionary lineages and high levels of evolutionary history. Focusing conservation and carbon-based payments for ecosystem services on secondary forest recovery and their subsequent protection thus represent a good use of scarce conservation resources
Logged tropical forests represent a major opportunity for preserving biodiversity and sequestering carbon, playing a large role in meeting global forest restoration targets. Left alone, these ecosystems have been expected to undergo natural regeneration and succession towards old growth forests, but extreme drought events may challenge this process. While old growth forests possess a certain level of resilience, we lack understanding as to how logging may affect forest responses to drought. This study examines the drought-logging interaction in seedling dynamics within a landscape of logged and unlogged forests in Sabah Malaysia, based on 73 plots monitored before and after the 2015-16 El Niño drought. Drought increased seedling mortality in all forests, but the magnitude of this impact was modulated by logging intensity, with forests with lower canopy leaf area index and above-ground biomass experiencing greater drought induced mortality. Moreover, community traits in more heavily logged forests shifted towards being more ruderal after drought, suggesting that the trajectory of forest succession had been reversed. These results indicate that with reoccurring strong droughts under a changing climate, logged forests that have had over half of their biomass removed may suffer permanently arrested succession. Targeted management interventions may therefore be necessary to lift the vulnerable forests above the biomass threshold.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.