This work aimed to characterize compositional and bioactive features of Aloe vera leaf (fillet, mucilage, and rind) and flower. The edible fillet was analysed for its nutritional value, and all samples were studied for phenolic composition and antioxidant, anti-inflammatory, antimicrobial, tyrosinase inhibition, and cytotoxic activities. Dietary fibre (mainly mannan) and available carbohydrates (mainly free glucose and fructose) were abundant macronutrients in fillet, which also contained high amounts of malic acid (5.75 g/100 g dw) and α-tocopherol (4.8 mg/100 g dw). The leaf samples presented similar phenolic profiles, with predominance of chromones and anthrones, and the highest contents were found in mucilage (131 mg/g) and rind (105 mg/g) extracts, which also revealed interesting antioxidant properties. On the other hand, the flower extract was rich in apigenin glycoside derivatives (4.48 mg/g), effective against Pseudomonas aeruginosa (MIC = 0.025 mg/mL and MBC = 0.05 mg/mL) and capable of inhibiting the tyrosinase activity (IC50 = 4.85 mg/mL). The fillet, rind, and flower extracts also showed a powerful antifungal activity against Aspergillus flavus, A. niger, Penicillium funiculosum, and Candida albicans, higher than that of ketoconazole. Thus, the studied Aloe vera samples displayed high potential to be exploited by the food or cosmetic industries, among others.
Heat (HAE)- and ultrasound (UAE)-assisted extraction methods were implemented to recover anthocyanins from red raspberry. Processing time, ethanol concentration, and temperature or ultrasonic power were the independent variables combined in five-level rotatable central composite designs coupled with response surface methodology (RSM) for processes optimization. The extraction yield and levels of cyanidin-3-O-sophoroside (C3S) and cyanidin-3-O-glucoside (C3G) were monitored by gravimetric and HPLC-DAD-ESI/MSn methods, respectively, and used as response criteria. The constructed theoretical models were successfully fitted to the experimental data and used to determine the optimal extraction conditions. When maximizing all responses simultaneously, HAE originated slightly higher response values (61% extract weight and 8.7 mg anthocyanins/g extract) but needed 76 min processing at 38 °C, with 21% ethanol (v/v), while the UAE process required 16 min sonication at 466 W, using 38% ethanol (v/v). The predictive models were experimentally validated, and the purple-red extracts obtained under optimal condition showed antioxidant activity through lipid peroxidation and oxidative hemolysis inhibition, and antibacterial effects against food-related microorganisms, such as Escherichia coli and Enterococcus faecalis. These results highlight the potential of red raspberry extracts as natural food colorants with bioactive effects and could be exploited by industries interested in the production of anthocyanin-based products.
Little attention has been paid to the phenolic composition and bioactive properties of primary tomato plant by-products (Solanum lycopersicum L.) as compared to fruits. In this study, axillary green shoots resulting from pruning and aerial biomass at the end of the cultivation cycle were characterized for their composition in chlorophylls and phenolic compounds, as well as for antioxidant and antimicrobial activities. The HPLC-DAD-ESI/MS n analysis allowed identifying phenolic acids and flavonoids, with prevalence of quercetin-3-O-rutinoside (rutin). The extracts had in vitro antioxidant and antihemolytic activity, especially those produced from pruning materials. Despite their low activity against the tested microfungi, some extracts had ability to inhibit and kill some bacteria more effectively than the antibiotic ampicillin. It was interesting to conclude that table tomato crop remains, currently with no commercial value, can be used to produce extracts with antioxidant and antibacterial activities for possible use in the agri-food sector as natural preservatives.
Nothofagus forests of the Andean Patagonian region are home to numerous wild edible mushroom (WEM) species with interesting organoleptic characteristics, although many of them have unknown nutritional and nutraceutical profiles. The proximal composition, fatty and organic acids, soluble sugars, phenolic compounds, ergosterol, as well as antioxidant and antimicrobial activity of 17 WEMs were analyzed. Carbohydrates, the most abundant macronutrients, varied between 49.00 g/100 g dw (C. magellanicus) and 89.70 g/100 g dw (F. antarctica). Significantly higher values were found for total fat in G. gargal (5.90 g/100 g dw) followed by A. vitellinus (4.70 g/100 g dw); for crude protein in L. perlatum (36.60 g/100 g dw) followed by L. nuda (30.30 g/100 g dw); and for energy in G. gargal (398 Kcal/100g) and C. hariotii (392 Kcal/100g). The most effective extracts regarding the TBARS antioxidant capacity were those of Ramaria. This is the first time that a study was carried out on the chemical composition of G. sordulenta, C. xiphidipus, F. pumiliae, and L. perlatum. The promotion of sustainable use of WEMs, including their incorporation in functional diets that choose WEMs as nutritious, safe, and healthy foods, and their use in an identity mycogastronomy linked to tourism development, requires the detailed and precise nutritional and nutraceutical information of each species.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.