This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
In seasonal environments subject to climate change, organisms typically show phenological changes. As these changes are usually stronger in organisms at lower trophic levels than those at higher trophic levels, mismatches between consumers and their prey may occur during the consumers' reproduction period. While in some species a trophic mismatch induces reductions in offspring growth, this is not always the case. F I G U R E 2 Study locations for Red Knot ssp. islandica (yellow dots), canutus (orange dots), rogersi (purple dot) and roselaari (red dot), Great Knot (blue square) and Surfbird (green diamond) [Colour figure can be viewed at wileyonlinelibrary.com]
Climate warming in the Arctic has led to warmer and earlier springs, and as a result, many food resources for migratory animals become available earlier in the season, as well as become distributed further northwards. To optimally profit from these resources, migratory animals are expected to arrive earlier in the Arctic, as well as shift their own spatial distributions northwards. Here, we review literature to assess whether Arctic migratory birds and mammals already show shifts in migration timing or distribution in response to the warming climate. Distribution shifts were most prominent in marine mammals, as expected from observed northward shifts of their resources. At least for many bird species, the ability to shift distributions is likely constrained by available habitat further north. Shifts in timing have been shown in many species of terrestrial birds and ungulates, as well as for polar bears. Within species, we found strong variation in shifts in timing and distributions between populations. Ou r review thus shows that many migratory animals display shifts in migration timing and spatial distribution in reaction to a warming Arctic. Importantly, we identify large knowledge gaps especially concerning distribution shifts and timing of autumn migration, especially for marine mammals. Our understanding of how migratory animals respond to climate change appears to be mostly limited by the lack of long-term monitoring studies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.