Wavefront sensors, which use solid-state CCD or CMOS photosensors, are sources of errors in adaptive optic systems. Inaccuracy in the detection of wavefront distortions introduces considerable errors into wavefront reconstruction and leads to overall performance degradation of the adaptive optics system. The accuracy of wavefront sensors is significantly affected by photosensor noise. Thus, it is crucial to formulate high-level photosensor models that enable adaptive optic engineers to simulate realistic effects of noise from wavefront sensors. However, the complexity of solid-state photosensors and multiple noise sources makes it difficult to formulate an adequate model of the photosensor. Moreover, the characterisation of the simulated sensor and comparison with real hardware is often incomplete due to lack of comprehensive standards and guidelines. Owe to these difficulties, engineers work with oversimplified models of the wavefront sensors and consequently have imprecise numerical simulation results. The paper presents an approach for the modelling of noise sources for CCD and CMOS sensors that are used for wavefront sensing in adaptive optics. Both dark and light noise such as fixed pattern noise, photon shot noise, and read noises, as well as, charge-to-voltage noises are described. Procedures for characterisation of both light and dark noises of the simulated photosensors are provided. Numerical simulation results of a photosensor for a high-frame rate Shack-Hartmann wavefront sensor are presented.
Control system design for adaptive optics is becoming more complex and sophisticated with increasing demands on the compensation of atmospheric turbulence. Contemporary controllers used in adaptive optics systems are optimised in the sense of a cost function (linear quadratic regulators) or to a worst case scenario (robust H ∞ controllers). Prediction, to some extent, can be incorporated into the controllers using the Kalman filter and a model of the atmospheric turbulence.Despite the growing number of publications on adaptive optics control systems, only the unconstrained case is usually considered. Accounting for the physical constraints of the adaptive optics system components, such as limited actuator stroke, still represents a problem. As a possible solution, one can consider constrained receding horizon control (RHC), also known as Model Predictive Control (MPC). The ability of RHC to handle constraints and make predictions of the future control signals makes it attractive for application in astronomical adaptive optics. The main potential difficulty with the application of RHC is its heavy computational load.This paper presents preliminary results on numerical simulations of an adaptive optics system controlled by constrained RHC. In particular, the case of output disturbance rejection is considered. The results of numerical simulations are provided. Finally, methods for improving the computational performance of constrained receding horizon controllers in adaptive optics are also discussed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.