Safe application of nanoparticles in medicine requires full understanding of their pharmacokinetics including catabolism in the organism. However, information about nanoparticle degradation is still scanty due to difficulty of long-term measurements by invasive techniques. Here, we describe a magnetic spectral approach for in vivo monitoring of magnetic particle (MP) degradation. The method noninvasiveness has allowed performing of a broad comprehensive study of the 1-year fate of 17 types of iron oxide particles. We show a long-lasting influence of five parameters on the MP degradation half-life: dose, hydrodynamic size, ζ-potential, surface coating, and internal architecture. We observed a slowdown in MP biotransformation with an increase of the injected dose and faster degradation of the particles of a small hydrodynamic size. A comparison of six types of 100 nm particles coated by different hydrophilic polymer shells has shown that the slowest (t 1/2 = 38 ± 6 days) and the fastest (t 1/2 = 15 ± 4 days) degradations were achieved with a polyethylene glycol and polyglucuronic acid coatings, respectively. The most significant influence on the MP degradation was due to the internal architecture of the particles as the coverage of magnetic cores with a solid 39 nm polystyrene layer slowed down the half-life of the core−shell MPs from 48 days to more than 1 year. The revealed deeper insights into the particle degradation in vivo may facilitate rational design of nano-and microparticles with predictable long-term fate in vivo.
It is widely acknowledged that the use of general anesthetics can undermine the relevance of electrophysiological or microscopical data obtained from a living animal's brain. Moreover, the lengthy recovery from anesthesia limits the frequency of repeated recording/imaging episodes in longitudinal studies. Hence, new methods that would allow stable recordings from non-anesthetized behaving mice are expected to advance the fields of cellular and cognitive neurosciences. Existing solutions range from mere physical restraint to more sophisticated approaches, such as linear and spherical treadmills used in combination with computer-generated virtual reality. Here, a novel method is described where a headfixed mouse can move around an air-lifted mobile homecage and explore its environment under stress-free conditions. This method allows researchers to perform behavioral tests (e.g., learning, habituation or novel object recognition) simultaneously with two-photon microscopic imaging and/or patch-clamp recordings, all combined in a single experiment. This video-article describes the use of the awake animal head fixation device (mobile homecage), demonstrates the procedures of animal habituation, and exemplifies a number of possible applications of the method.
Background Transcranial magnetic stimulation (TMS) allows non-invasive stimulation of the cortex. In multi-locus TMS (mTMS), the stimulating electric field (E-field) is controlled electronically without coil movement by adjusting currents in the coils of a transducer. Objective To develop an mTMS system that allows adjusting the location and orientation of the E-field maximum within a cortical region. Methods We designed and manufactured a planar 5-coil mTMS transducer to allow controlling the maximum of the induced E-field within a cortical region approximately 30 mm in diameter. We developed electronics with a design consisting of independently controlled H-bridge circuits to drive up to six TMS coils. To control the hardware, we programmed software that runs on a field-programmable gate array and a computer. To induce the desired E-field in the cortex, we developed an optimization method to calculate the currents needed in the coils. We characterized the mTMS system and conducted a proof-of-concept motor-mapping experiment on a healthy volunteer. In the motor mapping, we kept the transducer placement fixed while electronically shifting the E-field maximum on the precentral gyrus and measuring electromyography from the contralateral hand. Results The transducer consists of an oval coil, two figure-of-eight coils, and two four-leaf-clover coils stacked on top of each other. The technical characterization indicated that the mTMS system performs as designed. The measured motor evoked potential amplitudes varied consistently as a function of the location of the E-field maximum. Conclusion The developed mTMS system enables electronically targeted brain stimulation within a cortical region.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.