Background Metabolic reprogramming is being recognized as a fundamental hallmark of cancer, and efforts to identify drugs that can target cancer metabolism are underway. In this study, we used human breast cancer (BC) cell lines and established their invading phenotype (INV) collected from transwell inserts to compare metabolome differences and evaluate prognostic significance of the metabolome in aggressive BC invasiveness. Methods The invasiveness of seven human BC cell lines were compared using the transwell invasion assay. Among these, INV was collected from SUM149, which exhibited the highest invasiveness. Levels of metabolites in INV were compared with those of whole cultured SUM149 cells (WCC) using CE-TOFMS. The impact of glycolysis in INV was determined by glucose uptake assay using fluorescent derivative of glucose (2-NBDG), and significance of glycolysis, or tricarboxylic acid cycle (TCA) and electron transport chain (ETC) in the invasive process were further determined in aggressive BC cell lines, SUM149, MDA-MB-231, HCC1937, using invasion assays in the presence or absence of inhibitors of glycolysis, TCA cycle or ETC. Results SUM149 INV sub-population exhibited a persistent hyperinvasive phenotype. INV were hyper-glycolytic with increased glucose (2-NBDG) uptake; diminished glucose-6-phosphate (G6P) levels but elevated pyruvate and lactate, along with higher expression of phosphorylated-pyruvate dehydrogenase (pPDH) compared to WCC. Notably, inhibiting of glycolysis with lower doses of 2-DG (1 mM), non-cytotoxic to MDA-MB-231 and HCC1937, was effective in diminishing invasiveness of aggressive BC cell lines. In contrast, 3-Nitropropionic acid (3-NA), an inhibitor of succinate dehydrogenase, the enzyme that oxidizes succinate to fumarate in TCA cycle, and functions as complex II of ETC, had no significant effect on their invasiveness, although levels of TCA metabolites or detection of mitochondrial membrane potential with JC-1 staining, indicated that INV cells originally had functional TCA cycles and membrane potential. Conclusions Hyper-glycolytic phenotype of invading cells caters to rapid energy production required for invasion while TCA cycle/ETC cater to cellular energy needs for sustenance in aggressive BC. Lower, non-cytotoxic doses of 2-DG can hamper invasion and can potentially be used as an adjuvant with other anti-cancer therapies without the usual side-effects associated with cytotoxic doses.
Hepatocellular carcinoma (HCC) with extrahepatic metastasis is rare, and its prognosis is extremely poor. There is no standard treatment for HCC with extrahepatic metastasis. We report a case of abscopal effect in HCC with multiple pleural metastases in a patient who was treated with focal radiotherapy to extrahepatic metastasis, and achieved long-term survival. We performed radiotherapy only to the tumor in inferior vena cava and the proximal pleural tumor. The regimen comprised a total dose of 30 Gy administered in ten fractions to these tumors, followed by 12 Gy administered in four fractions (a total of 42 Gy in 14 fractions) as boost irradiation to the remaining tumor, and a complete regression was achieved. There have been some case reports on abscopal effects in HCC, but no reports on patients with multiple pleural metastases. To our knowledge, this is the first case report on the abscopal effect of focal radiotherapy resulting in complete regression of distant multiple pleural metastases.
Background: Triple-negative breast cancer (TNBC) exhibits poor prognosis due to the lack of targets for hormonal or antibody-based therapies, thereby leading to limited success in the treatment of this cancer subtype. Poly (ADP-ribose) polymerase 1 (PARP1) is a critical factor for DNA repair, and using PARP inhibitor (PARPi) is one of the promising treatments for BRCA-mutated (BRCA mut) tumors where homologous recombination repair is impaired due to BRCA1 mutation. Carbon ion (C-ion) radiotherapy effectively induces DNA damages in cancer cells. Thus, the combination of C-ion radiation with PARPi would be an attractive treatment for BRCA mut TNBC, wherein DNA repair systems can be severely impaired on account of the BRCA mutation. Till date, the effectiveness of C-ion radiation with PARPi in BRCA mut TNBC cell killing remains unknown. Purpose: Triple-negative breast cancer cell lines carrying either wild type BRCA1, BRCA wt, (MDA-MB-231), or the BRCA1 mutation (HCC1937) were used, and the effectiveness of PARPi, olaparib, combined with C-ion beam or the conventional radiation, or X-ray, on TNBC cell killing were investigated. Methods: First, effective concentrations of olaparib for BRCA mut (HCC1937) cell killing were identified. Using these concentrations of olaparib, we then investigated their radio-sensitizing effects by examining the surviving fraction of MDA-MB-231 and HCC1937 upon X-ray or C-ion irradiation. In addition, the number of γH2AX (DSB marker) positive cells as well as their expression levels were determined by immunohistochemistry, and results were compared between X-ray irradiated or C-ion irradiated cells. Furthermore, PARP activities in these cells were also observed by performing immunohistochemistry staining for poly (ADP-ribose) polymer (marker for PARP activity), and their expression differences were determined. Results: Treatment of cells with 25 nM olaparib enhanced radio-sensitivity of X-ray irradiated HCC1937, whereas lower dose (5 nM) olaparib showed drastic effects on increasing radio-sensitivity of C-ion irradiated HCC1937. Similar effect was not observed in MDA-MB-231, not possessing the BRCA1 mutation. Results of immunohistochemistry showed that X-ray or C-ion irradiation induced similar number of γH2AX-positive HCC1937 cells, but these induction levels were higher in C-ion irradiated HCC1937 with increased PARP activity compared to that of X-ray irradiated HCC1937. Elevated induction of DSB in C-ion irradiated HCC937 may fully activate DSB repair pathways leading to downstream activation of PARP, subsequently enhancing the effectiveness of PARPi, olaparib, with lower doses of olaparib exerting noticeable effects in cell killing of C-ion irradiated HCC1937. Conclusions: From this study, we demonstrate that C-ion irradiation can exert significant DSB in BRCA mut TNBC, HCC1937, with high PARP activation. Thus, PARPi, olaparib, would be a promising candidate as a radio-sensitizer for BRCA mut TNBC treatment, especially for C-ion radiotherapy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.