In this study, we established a robust feed-forward control model for the tableting process by partial least squares regression using the near-infrared (NIR) spectra and physical attributes of the granules to be compressed. The NIR spectra of granules are rich in information about chemical attributes, such as the compositions of any ingredients and moisture content. Polymorphism and pseudo-polymorphism can also be quantitatively evaluated by NIR spectra. We used the particle size distribution, flowability, and loose and tapped density as the physical attributes of the granules. The tableting process was controlled by the lower punch fill depth and the minimum distance between the upper and lower punches at compression, which were specifically related to the tablet weight and thickness, respectively. The feed-forward control of the process would be expected to provide some advantages for automated and semi-automated continuous pharmaceutical manufacturing. As a result, our model, using a combination of NIR spectra and the physical attributes of granules to control the distance between punches, resulted in respectable agreement between the predicted process parameters and actual settings to produce tablets of the desired thickness.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.