Recent work has suggested that prefrontal cortex (PFC) plays a key role in context-dependent perceptual decision-making. Here we address that role using a new method for identifying taskrelevant dimensions of neural population activity. Specifically, we show that PFC has a multidimensional code for context, decisions, and both relevant and irrelevant sensory information. Moreover, these representations evolve in time, with an early linear accumulation phase followed by a phase with rotational dynamics. We identify the dimensions of neural activity associated with these phases, and show that they do not arise from distinct populations, but of a single population with broad tuning characteristics. Finally, we use model-based decoding to show that the transition from linear to rotational dynamics coincides with a plateau in decoding accuracy, revealing that rotational dynamics in PFC preserve sensory choice information for the duration of the stimulus integration period.
Dynamic cerebral autoregulation (dCA) is impaired following stroke. However, the relationship between dCA, brain atrophy, and functional outcomes following stroke remains unclear. In this study, we aimed to determine whether impairment of dCA is associated with atrophy in specific regions or globally, thereby affecting daily functions in stroke patients.We performed a retrospective analysis of 33 subjects with chronic infarctions in the middle cerebral artery territory, and 109 age-matched non-stroke subjects. dCA was assessed via the phase relationship between arterial blood pressure and cerebral blood flow velocity. Brain tissue volumes were quantified from MRI. Functional status was assessed by gait speed, instrumental activities of daily living (IADL), modified Rankin Scale, and NIH Stroke Score.Compared to the non-stroke group, stroke subjects showed degraded dCA bilaterally, and showed gray matter atrophy in the frontal, parietal and temporal lobes ipsilateral to infarct. In stroke subjects, better dCA was associated with less temporal lobe gray matter atrophy on the infracted side ( = 0.029), faster gait speed ( = 0.018) and lower IADL score (0.002). Our results indicate that better dynamic cerebral perfusion regulation is associated with less atrophy and better long-term functional status in older adults with chronic ischemic infarctions.
Neural datasets often contain measurements of neural activity across multiple trials of a repeated stimulus or behavior. An important problem in the analysis of such datasets is to characterize systematic aspects of neural activity that carry information about the repeated stimulus or behavior of interest, which can be considered “signal”, and to separate them from the trial-to-trial fluctuations in activity that are not time-locked to the stimulus, which for purposes of such analyses can be considered “noise”. Gaussian Process factor models provide a powerful tool for identifying shared structure in high-dimensional neural data. However, they have not yet been adapted to the problem of characterizing signal and noise in multi-trial datasets. Here we address this shortcoming by proposing “signal-noise” Poisson-spiking Gaussian Process Factor Analysis (SNP-GPFA), a flexible latent variable model that resolves signal and noise latent structure in neural population spiking activity. To learn the parameters of our model, we introduce a Fourier-domain black box variational inference method that quickly identifies smooth latent structure. The resulting model reliably uncovers latent signal and trial-to-trial noise-related fluctuations in large-scale recordings. We use this model to show that predominantly, noise fluctuations perturb neural activity within a subspace orthogonal to signal activity, suggesting that trial-by-trial noise does not interfere with signal representations. Finally, we extend the model to capture statistical dependencies across brain regions in multi-region data. We show that in mouse visual cortex, models with shared noise across brain regions out-perform models with independent per-region noise.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.