Structural characterization of aggregates and fibrils of the Aβ protein is pivotal to the molecular-level elucidation of Alzheimer's disease (AD). AFM-IR spectroscopy provides nanoscale resolution, and thus allows the interrogation of individual aggregates and fibrils. During aggregation of Aβ, we observed mainly disordered Aβ at t = 15 min, but substantial structural diversity including the coexistence of parallel and antiparallel β-sheets within a large amorphous aggregate at t = 2 hours, while fibrils exhibited the expected signature of parallel βsheets at t = 1 week. The resonance observed for parallel βsheets at t = 2 hours coincides with that observed for fibrils (at 1634 cm À 1), thus indicating that fibril-like species exist within the large aggregates. Therefore, nucleation might occur within such species, in analogy to current theories of protein crystallization in which nucleation occurs within large protein clusters. Cu 2 + perturbs Aβ aggregation, catalysing rapid formation of amorphous aggregates with diverse secondary structure, but inhibiting fibril growth.
,I dunnP restholm, IlirianaQ oqaj, ChristinaB.R iel, To bias V. Rostgaard, Nora Saleh, HannibalM.S chultz, Mark Standland,Jens S. Svenningsen, RasmusTruels Sørensen, JesperV isby,E milie L. Wolff-Sneedorff, Malte Hee Zachariassen, Edmond A. Ziari, Henning O. Sørensen, and Thomas Just Sørensen* [a] To Professor Klaus Bechgaard and Professor ThomasB jørnholm for always teaching to think outside the box Abstract: Ionic self-assembly (ISA) is ap rovenm ethod that exploits non-covalenti nteractions to generate supramolecular materials. Here, we have expanded the scope of this approach fabricating thin films with nanoscopic order maintained over centimeters. Cationiclayers of benzalkonium surfactants form al amellar template. The template is able to host layers of negatively charged polyaromatic functional units, hered emonstrated with b-naphthol-derived azo-dyes. We show that av arietyo ft hese functional building blocks can be incorporated in the lamellar templatet hrough ISA. Sixteen different materials were produced,c haracterized, and processedi nto thin films, with lamellar order perpendicular to the substrate. Thus, ad esign concept is demonstrated in which diverse functional motifs can be isolated and ordered in a2 Dl attice between layers of alkyl chains in bulk and in thin films, in which the molecular orderi sm aintained and alignedt othe substrate.
Guided deposition of nanoparticles onto different substrates is of great importance for a variety of applications such as biosensing, targeted cancer therapy, anti-bacterial coatings and single molecular electronics. It is therefore important to gain an understanding of what parameters are involved in the deposition of nanoparticles. In this work we have deposited 60 nm, negatively charged, citrate stabilized gold nanoparticles onto microstructures consisting of six different materials, (vanadium (V), silicon dioxide (SiO2), gold (Au), aluminum (Al), copper (Cu) and nickel (Ni)). The samples have then been investigated by scanning electron microscopy to extract the particle density. The surface potential was calculated from the measured surface charge density maps measured by atomic force microscopy while the samples were submerged in a KCl water solution. These values were compared with literature values of the isoelectric points (IEP) of different oxides formed on the metals in an ambient environment. According to measurements, Al had the highest surface potential followed by Ni and Cu. The same trend was observed for the nanoparticle densities. No particles were found on V, SiO2 and Au. The literature values of the IEP showed a different trend compared to the surface potential measurements concluding that IEP is not a reliable parameter for the prediction of NP deposition.
Solvents can dramatically affect molecular crystals. Obtaining favorable properties for these crystals requires rational design based on molecular level understanding of the solid-solution interface. Here we show how atomic force...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.