To improve thermal performance of high-power chipon-board multichip LED module, a copper-core metal core printed circuit board (MCPCB) substrate with copper filled microvias is introduced. As a reference, the performance is compared with alumina module with the same layout by means of thermal simulations and measurements. Up to 55% reduction in the thermal resistance from the LED source to the bottom of the substrate is demonstrated. The excellent performance of the Cu MCPCB module is due to copper-filled microvias under the blue LED chips that occupy the majority of the multichip module. The conclusion was verified by measuring increased thermal resistances of red chips without thermal vias on the Cu MCPCB module. However, as the blue LEDs dominate the thermal power of the module, they also dominate the module thermal resistance. The thermal resistance was demonstrated to correspond with the number of vias as lower thermal resistance was measured on modules with larger number of vias. The Cu MCPCB was processed in standard PCB manufacturing and low cost material, FR4, was utilized for the electrical insulation. Thus, the solution is potentially cost-effective despite the higher cost of copper in comparison with aluminum that is the most commonly used MCPCB core material.
Single and multi-layer passive optical interconnects using single mode polymer waveguides are demonstrated using UV nano-imprint lithography. The fabrication tolerances associated with imprint lithography are investigated and we show a way to experimentally quantify a small variation in index contrast between core and cladding of fabricated devices. 1x2 splitting devices based on directional couplers and multimode interference interferometers are demonstrated to have less than 0.45 dB insertion loss with 0.02 ± 0.01 dB power imbalance between the outputs. We demonstrate an 'optical via' with an insertion loss less than 0.45 dB to transfer light from one optical signal plane to another. A 1x4 two-dimensional optical port is experimentally demonstrated to spatially split the input power with an insertion loss of 1.2 dB.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.