We have statistically characterized the self-assembly of multi-layer polystyrene colloidal crystals, using the technique of vertical deposition, with parameters chosen to produce thick layers of self-assembled crystals in one deposition step. In addition, using a lithographically directed selfassembly method, we have shown that the size of multi-layer, continuous crack-free domains in lithographically defined areas can be many times larger than in the surrounding areas. In a single deposition step, we have produced continuous colloidal crystal films of 260 nm diameter polystyrene spheres approximately 30 -40 layers thick, with a controllable lateral size of 80 -100 µm without lithography, and as high as 250 µm with the lithographic template.
Abstract. We demonstrate a method to fabricate narrow, down to a few micron wide metallic leads on top of a three-dimensional colloidal crystal self-assembled from polystyrene (PS) nanospheres of diameter 260 nm, using electron-beam lithography. This fabrication is not straightforward due to the fact that PS nanospheres cannot usually survive the harsh chemical treatments required in the development and lift-off steps of electron-beam lithography. We solve this problem by increasing the chemical resistance of the PS nanospheres using an additional electron-beam irradiation step, which allows the spheres to retain their shape and their self-assembled structure, even after baking to a temperature of 160 degrees C, the exposure to the resist developer and the exposure to acetone, all of which are required for the electron-beam lithography step. Moreover, we show that by depositing an aluminum oxide capping layer on top of the colloidal crystal after the e-beam irradiation, the surface is smooth enough so that continuous metal wiring can be deposited by the electron-beam lithography. Finally, we also demonstrate a way to self-assemble PS colloidal crystals into a microscale container, which was fabricated using direct-write three-dimensional laser-lithography. Metallic wiring was also successfully integrated with the combination of a container structure and a PS colloidal crystal. Our goal is to make a device for studies of thermal transport in 3D phononic crystals, but other phononic or photonic crystal applications could also be envisioned.
We present conformal optical coatings on complex 3D-macrostructures using atomic layer deposition. For 13 different low-loss oxide processes, we report thickness and refractive index non-uniformities of 0.43-2.64% and 0.04-0.42%, respectively.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.