Alzheimer’s disease (AD) is the leading cause of dementia worldwide. Individuals affected by the disease gradually lose their capacity for abstract thinking, understanding, communication and memory. As populations age, declining cognitive abilities will represent an increasing global health concern. While AD was first described over a century ago, its pathogenesis remains to be fully elucidated. It is believed that cognitive decline in AD is caused by a progressive loss of neurons and synapses that lead to reduced neural plasticity. AD is a multifactorial disease affected by genetic and environmental factors. The molecular hallmarks of AD include formation of extracellular β amyloid (Aβ) aggregates, neurofibrillary tangles of hyperphosphorylated tau protein, excessive oxidative damage, an imbalance of biothiols, dysregulated methylation, and a disproportionate inflammatory response. Recent reports have shown that viruses (e.g., Herpes simplex type 1, 2, 6A/B; human cytomegalovirus, Epstein-Barr virus, hepatitis C virus, influenza virus, and severe acute respiratory syndrome coronavirus 2, SARS-CoV-2), bacteria (e.g., Treponema pallidum, Borrelia burgdorferi, Chlamydia pneumoniae, Porphyromonas gingivalis, Prevotella intermedia, Tannerella forsythia, Fusobacterium nucleatum, Aggregatibacter actinomycetemcmitans, Eikenella corrodens, Treponema denticola, and Helicobacter pylori), as well as eukaryotic unicellular parasites (e.g., Toxoplasma gondii) may factor into cognitive decline within the context of AD. Microorganisms may trigger pathological changes in the brain that resemble and/or induce accumulation of Aβ peptides and promote tau hyperphosphorylation. Further, the mere presence of infectious agents is suspected to induce both local and systemic inflammatory responses promoting cellular damage and neuronal loss. Here we review the influence of infectious agents on the development of AD to inspire new research in dementia based on these pathogens.
Neurological diseases can be broadly divided according to causal factors into circulatory system disorders leading to ischemic stroke; degeneration of the nerve cells leading to neurodegenerative diseases, such as Alzheimer’s (AD) and Parkinson’s (PD) diseases, and immune system disorders; bioelectric activity (epileptic) problems; and genetically determined conditions as well as viral and bacterial infections developing inflammation. Regardless of the cause of neurological diseases, they are usually accompanied by disturbances of the central energy in a completely unexplained mechanism. The brain makes up only 2% of the human body’s weight; however, while working, it uses as much as 20% of the energy obtained by the body. The energy requirements of the brain are very high, and regulatory mechanisms in the brain operate to ensure adequate neuronal activity. Therefore, an understanding of neuroenergetics is rapidly evolving from a “neurocentric” view to a more integrated picture involving cooperativity between structural and molecular factors in the central nervous system. This article reviewed selected molecular biomarkers of oxidative stress and energy metabolism disorders such as homocysteine, DNA damage such as 8-oxo2dG, genetic variants, and antioxidants such as glutathione in selected neurological diseases including ischemic stroke, AD, PD, and epilepsy. This review summarizes our and others’ recent research on oxidative stress in neurological disorders. In the future, the diagnosis and treatment of neurological diseases may be substantially improved by identifying specific early markers of metabolic and energy disorders.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.