The medial forebrain bundle (MFB) is a white matter pathway that traverses through mesolimbic structures and includes dopaminergic neural fibers ascending from the ventral tegmental area (VTA). Since dopaminergic signals represent hedonic responses, electrical stimulation of the MFB in animals has been used as a neural reward for operant and spatial tasks. MFB stimulation strongly motivates animals to rapidly learn to perform a variety of behavioral tasks to obtain a reward. Although the MFB is known to connect various brain regions and MFB stimulation dynamically modulates animal behavior, how central and peripheral functions are affected by MFB stimulation per se is poorly understood. To address this question, we simultaneously recorded electrocorticograms (ECoGs) in the primary motor cortex (M1), primary somatosensory cortex (S1), and olfactory bulb (OB) of behaving rats while electrically stimulating the MFB. We found that MFB stimulation increased the locomotor activity of rats. Spectral analysis confirmed that immediately after MFB stimulation, sniffing activity was facilitated and the power of gamma oscillations in the M1 was increased. After sniffing activity and motor cortical gamma oscillations were facilitated, animals started to move. These results provide insight into the importance of sniffing activity and cortical gamma oscillations for motor execution and learning facilitated by MFB stimulation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.