Personal health records (PHRs) are private and vital assets for every patient. There have been introduced many works on various aspects of managing and organizing the PHR so far. However, there is an uncertain remaining issue for the role of PHR in emergencies. In a traditional emergency access system, the patient cannot give consent to emergency staff for accessing his/her PHR. Moreover, there is no secured record management of patient's PHR, which reveals highly confidential personal information, such as what happened, when, and who has access to such information. This paper proposes an emergency access control management system (EACMS) based on permissioned blockchain hyperledger fabric and hyperledger composer. In the proposed system, we defined some rules using the smart contracts for emergency condition and time duration for the emergency access PHR data items that patient can assign some limitations for controlling the PHR permissions. We analyzed the performance of our proposed framework by implementing it through the hyperledger composer based on the response time, privacy, security, and accessibility. The experiments confirm that our framework provides better efficiency compared with the traditional emergency access system.
Modern text hiding is an intelligent programming technique which embeds a secret message/watermark into a cover text message/file in a hidden way to protect confidential information. Recently, text hiding in the form of watermarking and steganography has found broad applications in, for instance, covert communication, copyright protection, content authentication, etc. In contrast to text hiding, text steganalysis is the process and science of identifying whether a given carrier text file/message has hidden information in it, and, if possible, extracting/detecting the embedded hidden information. This paper presents an overview of state of the art of the text hiding area, and provides a comparative analysis of recent techniques, especially those focused on marking structural characteristics of digital text message/file to hide secret bits. Also, we discuss different types of attacks and their effects to highlight the pros and cons of the recently introduced approaches. Finally, we recommend some directions and guidelines for future works.
With the ceaseless usage of web and other online services, it has turned out that copying, sharing, and transmitting digital media over the Internet are amazingly simple. Since the text is one of the main available data sources and most widely used digital media on the Internet, the significant part of websites, books, articles, daily papers, and so on is just the plain text. Therefore, copyrights protection of plain texts is still a remaining issue that must be improved in order to provide proof of ownership and obtain the desired accuracy. During the last decade, digital watermarking and steganography techniques have been used as alternatives to prevent tampering, distortion, and media forgery and also to protect both copyright and authentication. This paper presents a comparative analysis of information hiding techniques, especially on those ones which are focused on modifying the structure and content of digital texts. Herein, various text watermarking and text steganography techniques characteristics are highlighted along with their applications. In addition, various types of attacks are described and their effects are analyzed in order to highlight the advantages and weaknesses of current techniques. Finally, some guidelines and directions are suggested for future works.
Blockchain technology is the most trusted all-in-one cryptosystem that provides a framework for securing transactions over networks due to its irreversibility and immutability characteristics. Blockchain network, as a decentralized infrastructure, has drawn the attention of various startups, administrators, and developers. This system preserves transactions from tampering and provides a tracking tool for tracing past network operations. A personal health record (PHR) system permits patients to control and share data concerning their health conditions by particular peoples. In the case of an emergency, the patient is unable to approve the emergency staff access to the PHR. Furthermore, a history record management system of the patient’s PHR is required, which exhibits hugely private personal data (e.g., modification date, name of user, last health condition, etc.). In this paper, we suggest a healthcare management framework that employs blockchain technology to provide a tamper protection application by considering safe policies. These policies involve identifying extensible access control, auditing, and tamper resistance in an emergency scenario. Our experiments demonstrated that the proposed framework affords superior performance compared to the state-of-the-art healthcare systems concerning accessibility, privacy, emergency access control, and data auditing.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.