The technical feasibility, mechanisms, and performance of degradation of aqueous imidacloprid have been studied at pilot scale in two well-defined photocatalytic systems of special interest because natural UV light can be used: heterogeneous photocatalysis with titanium dioxide and homogeneous photocatalysis by photo-Fenton. Equivalent pilot-scale and field conditions used for both allowed adequate comparison of the degree of mineralization and toxicity achieved as well as the transformation products generated in route to mineralization by both systems. Ninety-five percent of mineralization (<2.0 mg/L) was reached after 250 min of photocatalytic treatment with Fenton and 450 min with TiO2, meaning that TOC disappears 2.4 times faster with photo-Fenton photocatalytic treatment than with TiO2. The Daphnia Magna test for final residual TOC does not reveal anytoxic behavior. Transformation products evaluated by GC-MS/AED after two SPE procedures and LC-IC were the same in both cases. The main differences between the two processes are in the amount of transformation products (TPs) generated, not in the TPs detected which were always the same. At the end of both processes low concentration (<0.1 mg/L) of 2 pyrrolidinone (transformation product) remains in the dissolution and around 1 mg/L of formate in the case of photo-Fenton.
Because of the international trade of fruits and vegetables and the lack of harmonized regulations on the use of pesticides worldwide, the development of comprehensive screening methods for analyzing hundreds of pesticides and other banned chemicals is very convenient. This work reports the development and evaluation of a rapid automated screening method for determining pesticide residues in food using liquid chromatography electrospray time-of-flight mass spectrometry (LC-TOFMS) based on the use of an accurate-mass database. The database created includes data not only on the accurate masses of the target ions but also the characteristic in-source fragment ions (over 400 fragments included) and retention time data. This customized database was associated to commercially available software which extracted all the potential compounds of interest from the LC-TOFMS raw data of each sample and matched them against the database to search for targeted compounds in the sample. This automatic screening method requires a careful optimization of the accurate-mass window and retention time tolerances, which play a determinant role on the selectivity, accuracy, and throughput of the whole procedure. Values of 10 mDa for preliminary screening and 1 mDa/5 ppm for confirmation along with a +/-0.15 min retention time window were found to be optimum for the compounds and samples tested. The optimized methods enable the automated screening of ca. 300 compounds in less than 20 min including the LC-MS run and data processing. The proposed method was applied to 60 real samples, and the results of the positive findings compared well with those obtained using a liquid chromatography tandem mass spectrometry (LC-MS/MS) method (triple quadrupole). The rates obtained on the identification of compounds in spiked and real samples in an automated fashion at different concentration levels were over 95% of the compounds, thus revealing as a convenient tool for the large-scale screening of pesticides in foodstuffs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.