The primary purpose of the review is to describe the biological growth and its effects on the goepolymeric and ordinary concrete surfaces. As the concrete ages, the surface alkalinity wears off by carbonation and weathering,thus prepares a suitable environment for biological growth. Micro-organisms such as algae, fungi and various types of bacteria start to accumulate on the surface and subsequently penetrate into the micro-cracks of concrete structures, resulting in bursting stresses that can increase the size of cracks and may lead to spalling. Despite the natural resistance of concrete structures against biological growth in the early periods, anti-bacterial additives increase the resistance later.
The production of conventional cement involves high energy consumption and the release of substantial amounts of carbon dioxide (CO2), exacerbating climate change. Additionally, the extraction of raw materials, such as limestone and clay, leads to habitat destruction and biodiversity loss. Geopolymer technology offers a promising alternative to conventional cement by utilizing industrial byproducts and significantly reducing carbon emissions. This paper analyzes the utilization of biomass fly ash (BFA) in the formation of geopolymer concrete and compares its carbon and cost impacts to those of conventional concrete. The previous analysis shows great potential for geopolymers to reduce the climate change impact of cement production. The results of this analysis indicate a significant disparity in the computed financial and sustainability costs associated with geopolymers. Researchers have shown that geopolymers may help mitigate the effects of cement manufacturing on the environment. These geopolymers are predicted to reduce green gas emissions by 40–80%. They also show that those advantages can be realized with the best possible feedstock source and the cheapest possible conveyance. Furthermore, our case study on CO2 emission and cost calculation for BFA-based geopolymer and conventional concrete shows that geopolymer concrete preparation emits 56% less CO2 than conventional concrete while costing 32.4% less per ton.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.