The current limitations of calcium phosphate cements (CPCs) used in the field of bone regeneration consist of their brittleness, low injectability, disintegration in body fluids and low biodegradability. Moreover, no method is currently available to measure the setting time of CPCs in correlation with the evolution of the setting reaction. The study proposes that it is possible to improve and tune the properties of CPCs via the addition of a thermosensitive, biodegradable, thixotropic copolymer based on poly(lactic acid), poly(glycolic acid) and poly(ethylene glycol) (PLGA–PEG–PLGA) which undergoes gelation under physiological conditions. The setting times of alpha-tricalcium phosphate (α-TCP) mixed with aqueous solutions of PLGA–PEG–PLGA determined by means of time-sweep curves revealed a lag phase during the dissolution of the α-TCP particles. The magnitude of the storage modulus at lag phase depends on the liquid to powder ratio, the copolymer concentration and temperature. A sharp increase in the storage modulus was observed at the time of the precipitation of calcium deficient hydroxyapatite (CDHA) crystals, representing the loss of paste workability. The PLGA–PEG–PLGA copolymer demonstrates the desired pseudoplastic rheological behaviour with a small decrease in shear stress and the rapid recovery of the viscous state once the shear is removed, thus preventing CPC phase separation and providing good cohesion. Preliminary cytocompatibility tests performed on human mesenchymal stem cells proved the suitability of the novel copolymer/α-TCP for the purposes of mini-invasive surgery.
Background:Elbow dislocation is the second most frequent type of large joint dislocations in adults. Standard treatment of simple elbow dislocation (SED) without manifestation of instability includes closed reduction, short-term immobilization of the elbow followed by functional aftercare. This study evaluates SED treatment, comparing outcomes of conservative functional treatment and surgical therapy.Materials and Methods:54 adult patients with SED without manifest instability treated in tertiary hospital between January 2008 and June 2015 were analyzed in this retrospective study. 28 patients were treated conservatively. Closed elbow reduction was followed by short-term plaster splint and active rehabilitation. Twenty six patients underwent closed elbow reduction and subsequent reconstruction of torn collateral ligaments. Postoperatively, plaster splint was applied followed by rehabilitation.Results:Patients who were treated conservatively reached statistically significant better scores in Quick Disability Arm Shoulder Hand, Oxford Elbow Score, and Mayo Elbow Performance Score. Functional conservative treatment resulted in a higher range of motion. The complication rate was higher in the group of surgically treated patients.Conclusions:Careful examination of elbow stability after closed reduction of SED is crucial for further therapy. Patients with stable SED should be treated with functional conservative therapy. Surgical collateral ligaments revision and reconstruction are indicated only for patients with manifestation of elbow instability.
BACKGROUND: Fasciotomy wounds can be a major contributor to length of stay for patients as well as a diffi cult reconstructive challenge. OBJECTIVES: To evaluate lower leg fasciotomy wound closure outcomes comparing treatment with combined dressing fabric (COM) and negative pressure wound therapy (NPWT) in combination with elastic dynamic ligature (EDL). METHODS: Retrospective study of 63 patients who underwent lower leg fasciotomy due to injury treated from January 2008 to December 2015 at the Department of Trauma Surgery, University Hospital Brno. Of these fasciotomy wounds 42 received a NPWT treatment in combination with EDL, 21 were treated only with COM. Fasciotomy wounds were closed either with primary suture or in case of persisting oedema and skin retraction the defect was covered with split thickness skin graft. RESULTS: There was statistically signifi cantly higher rate of primary wound closure using the NPWT versus traditional dressing (p = 0.015). Median time to defi nitive wound closure or skin grafting was shorter in the NPWT group. Number of dressing changes was lower in the NPWT group (p=0.008). CONCLUSION: NPWT combined with elastic dynamic ligature offers many advantages for fasciotomy wound closure in comparison with traditional techniques (Tab. 5, Fig. 3, Ref. 21). Text in PDF www.elis.sk.
Many growth factors have been studied as additives accelerating lumbar fusion rates in different animal models. However, their low hydrolytic and thermal stability both in vitro and in vivo limits their workability and use. In the proposed work, a stabilized vasculogenic and prohealing fibroblast growth factor-2 (FGF2-STAB®) exhibiting a functional half-life in vitro at 37 °C more than 20 days was applied for lumbar fusion in combination with a bioresorbable scaffold on porcine models. An experimental animal study was designed to investigate the intervertebral fusion efficiency and safety of a bioresorbable ceramic/biopolymer hybrid implant enriched with FGF2-STAB® in comparison with a tricortical bone autograft used as a gold standard. Twenty-four experimental pigs underwent L2/3 discectomy with implantation of either the tricortical iliac crest bone autograft or the bioresorbable hybrid implant (BHI) followed by lateral intervertebral fixation. The quality of spinal fusion was assessed by micro-computed tomography (micro-CT), biomechanical testing, and histological examination at both 8 and 16 weeks after the surgery. While 8 weeks after implantation, micro-CT analysis demonstrated similar fusion quality in both groups, in contrast, spines with BHI involving inorganic hydroxyapatite and tricalcium phosphate along with organic collagen, oxidized cellulose, and FGF2- STAB® showed a significant increase in a fusion quality in comparison to the autograft group 16 weeks post-surgery (p = 0.023). Biomechanical testing revealed significantly higher stiffness of spines treated with the bioresorbable hybrid implant group compared to the autograft group (p < 0.05). Whilst histomorphological evaluation showed significant progression of new bone formation in the BHI group besides non-union and fibrocartilage tissue formed in the autograft group. Significant osteoinductive effects of BHI based on bioceramics, collagen, oxidized cellulose, and FGF2-STAB® could improve outcomes in spinal fusion surgery and bone tissue regeneration.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.