The article is deals by an introduction to the theory of impact load for thin plates. This is the plates that are characterized by a structure which is bounded by upper and lower surface plane. These surfaces are spaced by a distance h, which is substantially smaller in comparison which other dimensions of the plate (a × b). The impact causes a deformation of the plate which is vibrated. The deformation is only within the limits of Hook's law. Therefore there is not permanent deformation of the plate. In the plate is induced shear stress, bending stress and shear forces. The second part of the article is focused on the numerical solution of thin isotropic aluminium plate which is made from AL 99.9. This plate has a dimension of 100 × 100 × 2 mm. It was solved the deformation of the plate after the impact load which were produced in the centre of the plate by FEM in software ADINA. By results was a graph of the deformation, velocity and acceleration of response wave in the material.
Significant research has been done in the analysis of properties of quantum dots over the previous decade. A 3D finite element model is developed to analyze quantum dots (QD) under static thermal loads. The lattice mismatch between the quantum dot and the piezoelectric matrix is created by different thermal properties of materials at enhanced temperature of this electronic structure. The fully coupled thermo--piezoelectricity is applied to the analysis of the problem. Commercial FEM software ANSYS was used for analysis. Finite element numerical results are given for the dot with a cubic shape. Numerical results for the InAs/GaAs QD nanostructure show that the elastic and electric fields are strongly influenced by the differences between the material properties of the piezoelectric QD and matrix.
The finite element method (FEM) is one of the most widely and most popular numerical methods for analyzing damage of composite structures, In this paper discrete damage mechanics (DDM) is used to predict inter-laminar transverse and shear damage initiation and evolution in terms of the fracture toughness of the laminate. ANSYS commercial software is used for analysis of layered plate composite structure reinforced with long unidirectional fibers with Carbon/Epoxy material. Because ANSYS does not have a built-in capability for calculating crack density, we have to use plagin. A methodology for determination of the fracture toughness is based on fitting DDM model and these data are obtained from literature. Also, prediction of modulus vs. applied strain is contrasted with ply discount results and the effect of in situ correction of strength is highlighted. Evaluation of matrix cracking detected in lamina has been solved using return mapping algorithm.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.