We determined abundance of Aedes aegypti mosquitoes and presence of dengue virus (DENV) in females collected from schools in Mérida, México, during 2008 and 2009. Backpack aspiration from 24 schools produced 468 females of Ae. aegypti and 1,676 females of another human biter, Culex quinquefasciatus. Ae. aegypti females were collected most commonly from classrooms followed by offices and bathrooms. Of these females, 24.7% were freshly fed. Examination of 118 pools of Ae. aegypti females (total of 415 females) for presence of DENV RNA produced 19 positive pools (16.1%). DENV-infected pools were detected from 11 (45.8%) of 24 schools and came from different room types, including classrooms, offices, and bathrooms. The overall rate of DENV infection per 100 Ae. aegypti females was 4.8. We conclude that schools in Mérida present a risk environment for students, teachers, and other personnel to be exposed to mosquitoes and bites of DENV-infected Ae. aegypti females.
During 2007-2010, we examined which container types in Mérida, México, are most productive for Aedes aegypti (L.) immatures. Surveys for mosquito immatures followed routine surveillance methodology and container type classifications used by Servicios de Salud de Yucatán. Our main findings were that (1) small and larger discarded containers that serve no particular purpose and therefore can be removed from the environment contribute strongly to larval and pupal production in Mérida, and (2) the importance of different container types can vary among sets of residential premises as well as between dry and wet periods. These results may help to guide future implementation in Mérida of control efforts that target the most productive container types for Ae. aegypti immatures. Furthermore, if the Patio Limpio cleanup campaign that currently is ongoing in Mérida proves successful in removing discarded containers as important immature development sites, then we should see dramatic changes in the most productive container types in the future as the mosquito is forced to switch to other container types, which perhaps also will be easier to include in highly targeted mosquito control interventions.
Following the introduction of West Nile virus (WNV) into North America in 1999, surveillance for evidence of infection with this virus in migratory and resident birds was established in Yucatán State, México in March 2000. Overall, 8611 birds representing 182 species and 14 orders were captured and assayed for antibodies to WNV. Of these, 5066 (59%) birds were residents and 3545 (41%) birds were migrants. Twenty-one (0.24%) birds exhibited evidence of flavivirus infection. Of these, 8 birds had antibodies to WNV by epitope-blocking enzyme-linked immunosorbent assay. Five (0.06%) birds (gray catbird, brown-crested flycatcher, rose-breasted grosbeak, blue bunting and indigo bunting) were confirmed to have WNV infections by plaque reduction neutralization test. The WNV-infected birds were sampled in December 2002 and January 2003. The brown-crested flycatcher and blue bunting presumably were resident birds; the other WNV seropositive birds were migrants. These data provide evidence of WNV transmission among birds in the Yucatán Peninsula.
We captured 140 bats of seven species in Merida City in the Yucatan Peninsula of Mexico in 2010. Serum was collected from each bat and assayed by plaque reduction neutralization test (PRNT) using six flaviviruses: West Nile virus, St. Louis encephalitis virus, and dengue viruses 1–4. Flavivirus-specific antibodies were detected in 26 bats (19%). The antibody-positive bats belonged to three species: the Pallas's long-tongued bat (Glossophaga soricina), Jamaican fruit bat (Artibeus jamaicensis), and great fruit-eating bat (Artibeus lituratus), and their flavivirus antibody prevalences were 33%, 24%, and 9%, respectively. The PRNT titers were usually highest for dengue virus 2 or dengue virus 4, but none of the titers exceeded 80. These data could indicate that most of the antibody-positive bats had been infected with dengue virus. However, because all titers were low, it is possible that the bats had been infected with another (perhaps unrecognized) flavivirus not included in the PRNT analysis, possibly a virus more closely related to dengue virus than to other flaviviruses. Each serum sample was assayed for flavivirus RNA by reverse transcription PCR, but all were negative.
We collected mosquito immatures from artificial containers during 2010–2011 from 26 communities, ranging in size from small rural communities to large urban centers, located in different parts of Yucatán State in southeastern México. The arbovirus vector Aedes (Stegomyia) aegypti was collected from all 26 examined communities, and nine of the communities also yielded another container-inhabiting Aedes mosquito: Aedes (Howardina) cozumelensis. The communities from which Ae. cozumelensis were collected were all small, rural communities (<6,000 inhabitants) in the north-central part of Yucatán State. These new collection records for Ae. cozumelensis demonstrate that this mosquito has a far broader geographic range in the Yucatán Peninsula than previously known. Ae. cozumelensis immatures were collected from both residential premises and cemeteries, with specimens recovered from rock holes as well as various artificial containers including metal cans, flower vases, buckets, tires and a water storage tank. The co-occurrence with Ae. aegypti in small rural communities poses intriguing questions regarding linkages between these mosquitoes, including the potential for direct competition for larval development sites. Additional studies are needed to determine how commonly Ae. cozumelensis feeds on human blood and whether it is naturally infected with arboviruses or other pathogens of medical or veterinary importance. We also summarize the published records for Ae. cozumelensis, which are restricted to collections from México’s Yucatán Peninsula and Belize, and uniformly represent geographic locations where Ae. aegypti can be expected to occur.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.