Purpose: The purpose of this work is to present a method based on the application of method engineering, in order to eliminate downtime and improve the manufacturing cell.Design/methodology/approach: The research strategy employed was a case study applied to a manufacturing company to explore the causes of excessive dead time and low productivity. The methodology used was divided in five steps. The first corresponds to the analysis of the lathe and grinding process; the second is the elaboration of the man-machine diagram to identify dead times; the third is the application of the improvement proposal; the fourth is the redistribution of the cell to optimize the process; the fifth is to conclude from the results obtained.Findings: With the proposed method, the downtime was reduced by 41% and only 50% of the available labor is required, therefore, it is concluded that the method can be used to redesign manufacturing cells.Research limitations/implications: This research was limited to analyzing and improving human-machine interaction, since work is not just the machine, or the individual alone, or the individual manipulating the machine, therefore, no other tools were used to improve the time of machines operation.Practical implications: Designing a manufacturing cell that allows the operator to do his job with less fatigue and not adapt the operator to the job, as commonly happens.Social implications: Companies must show a greater interest in occupational health by including human capital in their optimization plans to avoid future harm to workers.Originality/value: The key contribution of this paper focused on developing a novel and practical methodology to design or re-design manufacturing cells to improve productivity considering the human factor, inspired by the main concepts of method engineering.
The human factor is becoming increasingly relevant for its role in industrial development; therefore, it is necessary to evaluate the machine–man–environment system in an integrated and not isolated way, as is commonly done, for evaluating the sustainability performance of manufacturing practices. For this reason, in this paper, an ergonomic triad model is proposed for calculating a novel Sustainable Work Index, (SWI), made up of the factors: human work, workstation design, organizational environment and sustainable environmental conditions. The methodology consists of defining the productive time, interviewing the workers, taking anthropometric measurements, assessing the environmental conditions, obtaining the indicators for each factor, calculating the index and interpreting the results to define improvement actions. The model was applied to a manufacturing industry obtaining a regular status with an index of 63.6%. Improvement actions were implemented, and it was possible to increase the index to 73.9%, which represents a good commitment of the company towards occupational health. The development of the new triad model to calculate the SWI will allow industries to visualize indicators of the interaction of the ergonomic triad, identify its current condition and propose actions to physically, organizationally and environmentally improve human well-being and system performance.
Purpose: Identifying possible ergonomic risks generated by the implementation of Lean Manufacturing in organizations. Shows a need to integrate ergonomics and productivity indicators in process analysis, thus giving place to the ErgoVSM methodology, which is VSM (Value Stream Mapping) complemented with ergonomic analysis.Design/methodology/approach: This literature review aims to refer to the methodology and instruments used for its application, as well as the benefits obtained and the challenges that arise when applying it.Findings: This article presents a review of 26 publications regarding the ErgoVSM methodology. The ErgoVSM is mainly based on the VSM methodology developed by Rother & Shook that is most applied in the healthcare sector with ergonomic analysis instruments that focus on the physical and psychosocial factors of the workers.Originality/value: The review revealed that when using ErgoVSM, processes can be improved from the ergonomic perspective without negatively affecting productivity. Even though ErgoVSM requires more time for application compared to VSM, the value of the ergonomic data for decision making in process changes justifies the extra time.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.