Mutations in the GnRH receptor (GNRHR) have been described as a cause of reproductive failure in a subset of patients with idiopathic hypogonadotropic hypogonadism (IHH). Given the apparent rarity of these mutations, we set out to determine the frequency and distribution of GNRHR mutations in a heterogeneous population of patients with IHH who were well characterized with respect to diagnosis, phenotype, and mode of inheritance and to define their distribution within the receptor protein. One hundred and eight probands with IHH were screened for mutations in the coding sequence of GNRHR. Forty-eight of the 108 patients had a normal sense of smell, whereas the remaining 60 had anosmia or hyposmia (Kallmann syndrome). Exon segments in the GNRHR were screened for mutations using temperature gradient gel electrophoresis, and all mutations were confirmed by direct sequencing. Five unrelated probands (3 men and 2 women), all normosmic, were documented to have changes in the coding sequence of the GNRHR. Two of these probands were from a subgroup of 5 kindreds consistent with a recessive mode of inheritance, establishing a GNRHR mutation frequency of 2 of 5 (40%) in patients with normosmic, autosomal recessive IHH. The remaining 3 probands with GNRHR mutations were from a subgroup of 18 patients without evidence of familial involvement, indicating a prevalence of 3 of 18 (16.7%) in patients with sporadic IHH and a normal sense of smell. Among the five individuals bearing GNRHR mutations, a broad spectrum of phenotypes was noted, including testicular sizes in the male that varied from prepubertal to the normal adult male range. Three probands had compound heterozygous mutations, and two had homozygous mutations. Of the eight DNA sequence changes identified, four were novel: Thr(32)Ile, Cys(200)Tyr, Leu(266)Arg, and Cys(279)TYR: COS-7 cells transiently transfected with complementary DNAs encoding the human GNRHR containing each of these four novel mutations failed to respond to GnRH agonist stimulation. We conclude that 1) the spectrum of phenotypes in patients with GNRHR mutations is much broader than originally anticipated; 2) the frequency of GNRHR mutations may be more common than previously appreciated in familial cases of normosmic IHH and infrequent in sporadic cases; and 3) functional mutations of the GNRHR are distributed widely throughout the protein.
Determining the physiologic influences that modulate GnRH secretion, the prime initiator of reproductive function in the human, is fundamental not only to our understanding of the rare condition of congenital idiopathic hypogonadotropic hypogonadism (IHH), but also common disorders such as constitutional delay of puberty and hypothalamic amenorrhea. IHH is characterized by low levels of sex steroids and gonadotropins, normal findings on radiographic imaging of the hypothalamic-pituitary regions, and normal baseline and reserve testing of the remainder of the hypothalamic-pituitary axes. Failure of the normal pattern of episodic GnRH secretion results in delay of puberty and infertility. IHH is characterized by rich clinical and genetic heterogeneity, variable modes of inheritance, and association with other anomalies. To date, 4 genes have been identified as causes of IHH in the human; KAL [the gene for X-linked Kallmann syndrome (IHH and anosmia)], DAX1 [the gene for X-linked adrenal hypoplasia congenita (IHH and adrenal insufficiency)], GNRHR (the GnRH receptor), and PC1 (the gene for prohormone convertase 1, causing a syndrome of IHH and defects in prohormone processing). As these mutations account for less than 20% of all IHH cases, discovery of additional gene mutations will continue to advance our understanding of this intriguing syndrome.
Mutations in the GnRH receptor (GNRHR) have been described as a cause of reproductive failure in a subset of patients with idiopathic hypogonadotropic hypogonadism (IHH). Given the apparent rarity of these mutations, we set out to determine the frequency and distribution of GNRHR mutations in a heterogeneous population of patients with IHH who were well characterized with respect to diagnosis, phenotype, and mode of inheritance and to define their distribution within the receptor protein. One hundred and eight probands with IHH were screened for mutations in the coding sequence of GNRHR. Forty-eight of the 108 patients had a normal sense of smell, whereas the remaining 60 had anosmia or hyposmia (Kallmann syndrome). Exon segments in the GNRHR were screened for mutations using temperature gradient gel electrophoresis, and all mutations were confirmed by direct sequencing. Five unrelated probands (3 men and 2 women), all normosmic, were documented to have changes in the coding sequence of the GNRHR. Two of these probands were from a subgroup of 5 kindreds consistent with a recessive mode of inheritance, establishing a GNRHR mutation frequency of 2 of 5 (40%) in patients with normosmic, autosomal recessive IHH. The remaining 3 probands with GNRHR mutations were from a subgroup of 18 patients without evidence of familial involvement, indicating a prevalence of 3 of 18 (16.7%) in patients with sporadic IHH and a normal sense of smell. Among the five individuals bearing GNRHR mutations, a broad spectrum of phenotypes was noted, including testicular sizes in the male that varied from prepubertal to the normal adult male range. Three probands had compound heterozygous mutations, and two had homozygous mutations. Of the eight DNA sequence changes identified, four were novel: Thr(32)Ile, Cys(200)Tyr, Leu(266)Arg, and Cys(279)TYR: COS-7 cells transiently transfected with complementary DNAs encoding the human GNRHR containing each of these four novel mutations failed to respond to GnRH agonist stimulation. We conclude that 1) the spectrum of phenotypes in patients with GNRHR mutations is much broader than originally anticipated; 2) the frequency of GNRHR mutations may be more common than previously appreciated in familial cases of normosmic IHH and infrequent in sporadic cases; and 3) functional mutations of the GNRHR are distributed widely throughout the protein.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.