Apple species are the unique naturally rich source of dihydrochalcones, phenolic compounds with an elusive role in planta, but suggested auto-allelochemical features related to “apple replant disease” (ARD). Our aim was to elucidate the physiological basis of the phytotoxic action of dihydrochalcone phloretin in the model plant Arabidopsis and to promote phloretin as a new prospective eco-friendly phytotoxic compound. Phloretin treatment induced a significant dose-dependent growth retardation and severe morphological abnormalities and agravitropic behavior in Arabidopsis seedlings. Histological examination revealed a reduced starch content in the columella cells and a serious disturbance in root architecture, which resulted in the reduction in length of meristematic and elongation zones. Significantly disturbed auxin metabolome profile in roots with a particularly increased content of IAA accumulated in the lateral parts of the root apex, accompanied by changes in the expression of auxin biosynthetic and transport genes, especially PIN1, PIN3, PIN7, and ABCB1, indicates the role of auxin in physiological basis of phloretin-induced growth retardation. The results reveal a disturbance of auxin homeostasis as the main mechanism of phytotoxic action of phloretin. This mechanism makes phloretin a prospective candidate for an eco-friendly bioherbicide and paves the way for further research of phloretin role in ARD.
The aim of this study was to develop a fast, reliable and true-to-type protocol for in vitro plant regeneration and long-term storage of horned pansy (Viola cornuta L). Seed germination over 60% was recorded after 12 weeks of growth at 10 °C or 4 °C. Calli formation and shoot induction were obtained in petiole and hypocotyl culture on half-strength MS mineral salts with full concentration of Na-FeEDTA and vitamins (½MS medium) with 2,4-dichlorophenoxyacetic acid (2,4-D, 0.1 mg/L) and 6-benzylaminopurine (BAP, 2.0 mg/L) and leaf culture on ½MS medium with thidiazuron (TDZ,1.0 mg/L). The highest frequency of adventitious shoot induction (50%) with six shoots/explant was achieved in hypocotyl culture from top hypocotyl segments, close to epicotyl which was grown 8 weeks at 16 h light/8 h dark photoperiod. Subsequent shoot multiplication was achieved on ½MS medium with α-naphthaleneacetic acid (NAA, 0.1 or 0.5 mg/L) and BAP (1.0 mg/L). Rooting of shoots was obtained on ½MS medium with low concentration (0.1 mg/L) of auxins: indole-3-acetic acid (IAA), indole-3-butyric acid (IBA) or NAA, or without growth regulators. In vitro-derived plantlets were acclimatized under greenhouse conditions. All plants developed normally, bloomed and set seeds. Shoot tips were cryopreserved succssefully using modified plant vitrification 3 (PVS3-based vitrification procedure). Cold acclimation for 2 weeks significantly improved shoot regrowth (64%) after thawing in comparison to non-acclimated shoots (39%). Clonal fidelity of regenerated plantlets at ploidy level was confirmed by chromosome counting. The presented protocol can be useful for mass propagation, genetic transformation studies and long-term storage of valuable Viola spp.
Flower color is an important characteristic that determines the commercial value of ornamental plants. The development of modern biotechnology methods such as genetic engineering enables the creation of new flower colors that cannot be achieved with classical methods of hybridization or mutational breeding. This is the first report on the successful Agrobacterium-mediated genetic transformation of Viola cornuta L. The hypocotyl explants of cv. “Lutea Splendens” variety with yellow flowers were transformed with A. tumefaciens carrying empty pWBVec10a vector (Llccs−) or pWBVec10a/CaMV 35S::Llccs::TNos vector (Llccs+) for capsanthin/capsorubin synthase gene (Llccs) from tiger lily (Lilium lancifolium). A comparative study of shoot multiplication, rooting ability during culture in vitro, as well as phenotypic characteristics of untransformed (control) and transgenic Llccs− and Llccs+ plants during ex vitro growth and flowering is presented. Successful integration of Llccs transgene allows the synthesis of red pigment capsanthin in petal cells that gives flowers different shades of an orange/reddish color. We demonstrate that the ectopic expression of Llccs gene in ornamental plants, such as V. cornuta “Lutea Splendens” could successfully be used to change flower color from yellow to different shades of orange.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.