Anaerobic co-digestion technology is increasingly used to simultaneously treat solid and liquid organic waste to balance nutrient content, to reduce the negative effects of toxic compounds in the process, and to increase biogas yield. The aim of this study was to analyze the economic performance of co-digestion plants fed with agro-industrial wastes as a function of installed power, with a method of discounted cash flow. The study focused on Italian framework conditions concerning payment for electricity produced by anaerobic digestion (AD) plants as well as the production costs. The economic analysis was carried out using three different plant sizes: 100 kW, 500 kW, and 1000 kW, which are representative of biogas plants in Italy. The study showed that the improvement of the break-point is closely linked to the increase in corresponding plant size. Given the assumptions of the simulation, the payback for the 100 kW plant was nine years for both the all-inclusive tariff and the basic feed-in tariff (BFT). Regarding the 500 kW and 1000 kW plants, the payback periods were five and four years, respectively.
Heavy metal pollution in rivers and its impact on aquatic ecosystems is a dynamic process. Fish are ideal indicators of heavy metal contamination in aquatic systems because they occupy different trophic levels and are of different sizes and ages. In particular, copper is an essential trace metal for living organisms and it is present in all natural waters and sediments. In this paper, we report data on the effect of copper on DNA erythrocytes from the teleost gilthead sea bream Sparus aurata and the bivalve mollusk Scapharca inaequivalvis. In particular, the effect of 0.1 ppm of Cu2+ on the nucleated erythrocytes was analyzed using the "comet assay." This test is a promising tool for estimation of DNA damage at the single cell level. The data obtained show that the in vivo treatment with 0.1 ppm of copper increased the susceptibility of DNA to be damaged. Exposure to Cu2+ produces a more evident effect on Sparus aurata, as all three comet parameters significantly increased (tail length, tail intensity, and tail moment). The higher comet parameters measured in Scapharca inaequivalvis compared to Sparus aurata could be due to the difference in stability of the respective hemoglobins. The comet assay could represent a useful test to evaluate the biological consequences of environmental contamination by metals on marine organisms.
Vaccines are public health interventions aimed at preventing infections-related mortality, morbidity, and disability. While vaccines have been successfully designed for those infectious diseases preventable by preexisting neutralizing specific antibodies, for other communicable diseases, additional immunological mechanisms should be elicited to achieve a full protection. “New vaccines” are particularly urgent in the nowadays society, in which economic growth, globalization, and immigration are leading to the emergence/reemergence of old and new infectious agents at the animal–human interface. Conventional vaccinology (the so-called “vaccinology 1.0”) was officially born in 1796 thanks to the contribution of Edward Jenner. Entering the twenty-first century, vaccinology has shifted from a classical discipline in which serendipity and the Pasteurian principle of the three Is (isolate, inactivate, and inject) played a major role to a science, characterized by a rational design and plan (“vaccinology 3.0”). This shift has been possible thanks to Big Data, characterized by different dimensions, such as high volume, velocity, and variety of data. Big Data sources include new cutting-edge, high-throughput technologies, electronic registries, social media, and social networks, among others. The current mini-review aims at exploring the potential roles as well as pitfalls and challenges of Big Data in shaping the future vaccinology, moving toward a tailored and personalized vaccine design and administration.
BackgroundLifestyles profoundly determine the quality of an individual’s health and life since his childhood. Many diseases in adulthood are avoidable if health-risk behaviors are identified and improved at an early stage of life. The aim of the present research was to characterize a cohort of children aged 6–8 years selected in order to perform an epidemiological molecular study (the MAPEC_LIFE study), investigate lifestyles of the children that could have effect on their health status, and assess possible association between lifestyles and socio-cultural factors.MethodsA questionnaire composed of 148 questions was administered in two different seasons to parents of children attending 18 primary schools in five Italian cities (Torino, Brescia, Pisa, Perugia and Lecce) to obtain information regarding the criteria for exclusion from the study, demographic, anthropometric and health information on the children, as well as some aspects on their lifestyles and parental characteristics. The results were analyzed in order to assess the frequency of specific conditions among the different seasons and cities and the association between lifestyles and socio-economic factors.ResultsThe final cohort was composed of 1,164 children (50.9 boys, 95.4% born in Italy). Frequency of some factors appeared different in terms of the survey season (physical activity in the open air, the ways of cooking certain foods) and among the various cities (parents’ level of education and rate of employment, sport, traffic near the home, type of heating, exposure to passive smoking, ways of cooking certain foods). Exposure to passive smoking and cooking fumes, obesity, residence in areas with heavy traffic, frequency of outdoor play and consumption of barbecued and fried foods were higher among children living in families with low educational and/or occupational level while children doing sports and consuming toasted bread were more frequent in families with high socio-economic level.ConclusionsThe socio-economic level seems to affect the lifestyles of children enrolled in the study including those that could cause health effects. Many factors are linked to the geographical area and may depend on environmental, cultural and social aspects of the city of residence.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.