Together with the evidence that the reduced virus growth and the antiviral state induced by interferon (IFN)-gamma, occurring only in macrophages from resistant animals, correlated with the decrease of MHV3 binding to macrophage membrane proteins, we show here the expression of cellular and viral genes in resistant (A/J) and susceptible (BALB/c) mouse macrophages after IFN-gamma activation/infection. The expression of interferon response gene 47 and interferon regulatory factor 1 genes takes place after IFN-gamma activation in both macrophages, indicating their activation. The expression of the biliary glycoprotein 1(a) (Bgp1(a), the main virus receptor) decreased only in IFN-gamma-activated A/J mouse macrophages, in contrast to the expression of the Bgp2 (alternative receptor), which was not influenced by IFN-gamma activation. The synthesis of both viral mRNA and virus particles was delayed only in IFN-gamma-activated A/J mouse macrophages compared with susceptible BALB/c macrophages. Besides the evidence that IFN-gamma may modulate the expression of the Bgp1(a) isoform of carcinoembryonic antigen family, these data show that IFN-gamma, which induces resistance against MHV3 infection, may be involved in the down-regulation of the main viral receptor expression, a key step forward in our understanding of the molecular basis of resistance against virus infection.
IgY is a chicken egg yolk antibody which has been used for treatment and prophylaxis of gastrointestinal infections. Our aim was to verify if IgY obtained from chickens immunized with EPEC O111, STEC O111 and STEC O157 is able to show in vitro reactivity and biological activity towards the three bacteria. IgY was obtained from eggs laid before and after immunization with each bacterium. The preparations of IgY anti-EPEC O111 and anti-STEC O111 shared high reactivity detected by ELISA and growth inhibition ability towards both bacteria EPEC O111 and STEC O111. Nevertheless, the preparation of IgY anti-STEC O157 showed high reactivity and growth inhibitory effect only towards the homologous strain. Our results showing in vitro biological activity of IgY reinforce its use as an alternative for the treatment or prophylaxis of E. coli infections and encourage the development of in vivo studies for a possible future human therapeutic use.
In contrast to BALB/c mouse macrophages (Mphi), Mphi from the A/J mouse strain, upon activation by exogenous interferon gamma (IFNgamma), develop an anti-mouse hepatitis virus 3 (MHV3) state which correlates with resistance to virus infection. To investigate the autocrine activation of BALB/c and A/J Mphi, we activated them with interleukin-12 (IL-12) and/or IL-18, and quantified IFNgamma production, the anti-MHV3 state and arginine metabolism. Synergistic activation by IL-12/IL-18 induced the expression of the IFNgamma gene in Mphi from both mouse strains. In bone marrow (BM) or peritoneal (P) Mphi of specific pathogen-free (spf) mice of both strains, IFNgamma synthesis occurred only with a synergistic IL-12/IL-18 activation and showed increasing levels from 24 to 72 h of activation. In contrast, when non-spf mice were used in the assay, their PMphi synthesized higher IFNgamma levels upon activation with only IL-12 or only IL-18 or both. The BALB/c Mphi were always capable of synthesizing higher amounts of IFNgamma than the A/J Mphi. An anti-MHV3 state was observed only in A/J Mphi upon activation with IL-12/IL-18 or IFNgamma regardless of their origin from the peritoneum or bone marrow. Arginine metabolism in activated and/or virus infected BMMphi was investigated through nitric oxide (NO) and arginase induction as well as the consumption of arginine and synthesis of citrulline, ornithine and spermine. The results showed that both BALB/c and A/J BMMphi populations released NO only after activation with IL-12/IL-18 or IFNgamma. Arginase was not induced in BMMphi from both strains by IL-12/IL-18 or IFNgamma but only by IL-4/IL-10. Higher arginine consumption was observed in BMMphi from both strains upon activation with IL-4 or IFNgamma which further increased, in this case, when the cells were infected with MHV3. As a consequence of nitric oxide synthase synthesis and arginine consumption in IFNgamma activated BMMphi, we observed a higher synthesis of citrulline. High levels of ornithine were induced only upon IL-4 activation. Polyamine synthesis was higher in A/J BMMphi than in BALB/c ones, which correlated with the slightly lower levels of ornithine observed. Upon infection with MHV3, we observed a higher synthesis of spermine. IL-12/IL-18 or IFNgamma activation, mainly in MHV3 infected cells, led to a decreased synthesis of polyamines, notably spermine, only in A/J BMMphi. Difluoromethylornithine treatment, which leads to inhibition of polyamine synthesis, induced a decreased MHV3 multiplication in both BALB/c and A/J BMMphi. Altogether these data show the relevance of IFNgamma, from the autocrine or paracrine pathway, and arginine metabolism for the control of MHV3 replication in Mphi of a resistant mouse strain.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.