The advanced development of additive technologies over the past years led to the fact that parts made by these technologies have been increasingly used in the most diverse engineering applications. One of the most famous and the most applied additive technology is 3D printing. In this paper the influence of the material type on the operational characteristics of spur gears manufactured by the 3D printing technology is analyzed, after the experimental testing performed on a back to back gear test rig, in the predefined laboratory conditions.
The influence of the running-in process operating parameters on tribological properties of the block-on-disc samples in lubricated sliding conditions is analyzed and discussed in detail. Different running-in regimes are achieved by varying the normal load and sliding speed. After the running-in period, during which the operating parameters are varied, all samples are placed in a working regime under the same set of operating conditions. At the end of the running-in period, as well as at the end of the working period, an analysis of the changes in the surface roughness, microhardness, wear rate, and coefficient of friction is performed. Less desirable properties in terms of wear rate and steady-state coefficient of friction are noticed for the samples that were run-in with the operating conditions which were the same as the working regime operating conditions. In the defined test conditions, it is shown that the intensity of normal load applied during the running-in process has a dominant influence on the amount of wear and coefficient of friction value. It was also shown that the running-in process can significantly improve the roughness of the initially rough contact surfaces. The results of experimental testing indicate that the variation of the operating parameters during the running-in process can be used to improve the working ability of the sliding contact surfaces under the mixed lubrication regime.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.