Aims Phragmites australis grows as a pioneer plant species in several mine and flotation tailings ponds distinguished by extremely high concentrations of metals. The main goals of this study were to estimate the effects of the specific concentrations and combinations of accumulated metals on the efficiency of antioxidative enzymes and plant oxidative status. This study is relevant to our understanding of the common reed exceptional capacity to endure extreme edaphic conditions. Methods Metal concentrations were determined in the sediment, roots and leaves. Antioxidative enzymes activities, amounts of pigments and phenolics, total antioxidative capacity (TAC), lipid peroxidation level (LP) were analysed in plant organs. Results Effects of accumulated metals depended on their concentrations and their stoichiometry. Antioxidative enzymes and TAC in roots were significantly reduced, resulting in consequent increase in LP. Pb concentration in leaves did not significantly change enzymes activities, whereas toxic level of Cu impeded activity of catalaze and ascorbate peroxidase. Conclusions The results indicate that in the conditions of high root metal contamination the mechanisms involved in their immobilization and detoxification cannot completely restrain their toxicity. Their effects on enzymes activities depend on the type of enzyme, metal concentrations, specific ratios and interactions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.