Nowadays advantages in face-based modification using DeepFake algorithms made it possible to replace a face of one person with a face of another person. Thus, it is possible to make not only copy-move modifications, but to implement artificial intelligence and deep learning for replacing face movements from one person to another. Still images can be converted into video sequences. Consequently, the contemporaries, historical figures or even animated characters can be lively presented. Deepfakes are becoming more and more successful and it is difficult to detect them in some cases. In this paper we explain the video sequences we produced (e.g. using X2Face method, and First Order Motion Model for Image Animation) and perform deepfake video analysis using SIFT (Scale Invariant Feature Transform) based approach. The experiments show the simplicity in video forgery production, as well as the possible role of SIFT keypoints detection in differentiation between the deeply forged and original video content.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.