In Europe, enterovirus A71 (EV-A71) has primarily been associated with sporadic cases of neurological disease. The recent emergence of new genotypes and larger outbreaks with severely ill patients demonstrates a potential for the spread of new, highly pathogenic EV-A71 strains. Detection and characterisation of these new emerging EV variants is challenging as standard EV assays may not be adequate, necessitating the use of whole genome analysis.
Norovirus (NoV) is the most common cause of non-bacterial gastroenteritis and is a major agent associated with outbreaks of gastroenteritis. Conventional molecular genotyping analysis of NoV, used for the identification of transmission routes, relies on standard typing methods (STM) by Sanger-sequencing of only a limited part of the NoV genome, which could lead to wrong conclusions. Here, we combined a NoV capture method with next generation sequencing (NGS), which increased the proportion of norovirus reads by ~40 fold compared to NGS without prior capture. Of 15 NoV samples from 6 single-genotype outbreaks, near full-genome coverage (>90%) was obtained from 9 samples. Fourteen polymerase (RdRp) and 15 capsid (cap) genotypes were identified compared to 12 and 13 for the STM, respectively. Analysis of 9 samples from two mixed-genotype outbreaks identified 6 RdRp and 6 cap genotypes (two at >90% NoV genome coverage) compared to 4 and 2 for the STM, respectively. Furthermore, complete or partial sequences from the P2 hypervariable region were obtained from 7 of 8 outbreaks and a new NoV recombinant was identified. This approach could therefore strengthen outbreak investigations and could be applied to other important viruses in stool samples such as hepatitis A and enterovirus.
Despite the introduction of safe, effective vaccines decades ago and joint global public health efforts to eliminate measles, this vaccine-preventable disease continues to pose threats to children’s health worldwide. During 2013 and 2014, measles virus was introduced into Denmark through several independent importations. This resulted in a number of secondary cases (n = 7), with two clusters in 2013 and one in 2014. In total, there were 44 cases of measles. Most cases (n = 41) were laboratory confirmed by detection of measles virus genome by real-time reverse transcription (RT)-PCR and IgM antibodies. The viruses from confirmed cases were genotyped by sequencing. Only one genotype circulated each year, i.e. D8 and B3, respectively. Sequencing of measles virus from different clinical specimens from the same patients revealed that sequence variants of measles viruses might co-exist and co-transmit during an outbreak. The majority of the cases were unvaccinated (n = 27) or recipients of one dose of measles-mumps-rubella (MMR) vaccine (n = 7). In addition, two fully vaccinated adult cases were reported in 2014. We demonstrate the transmission of measles virus in a population in which the two-dose MMR vaccination coverage rate was 80% and how even vaccinated individuals may be at risk of contracting measles once transmission has been established.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.